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Communication delays cause robots to execute 
outdated commands, leading to collisions and 
mission failures. Current forward models assume 
rational decision-making, but humans exhibit 
complex risk-biased action patterns. 

This study integrates 
Cumulative Prospect 
Theory (CPT) to model 
how operators actually 
make decisions under 
uncertainty. By capturing 
individual risk 
preferences, we can 
predict human actions 
more accurately during 
delayed teleoperation 
scenarios.
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Applications & Impact

CPT describes human decision-making under 
uncertainty. Loss Aversion (losses weighted 
~2.25x more than gains) and Probability 
Weighting (overestimating rare events, 
underestimating common ones) create 
risk-biased behaviors. CPT Parameters (λ, α, β, 
γ) capture operator-specific risk tolerance.
CPT-parameterized models will better predict 
operator actions in high-risk scenarios than 
risk-neutral baselines.

Implementing CPT-based policy blending with 
risk parameters. Human subject studies to 
collect risk profile data. Validate CPT-integrated 
models predict operator preferences across risk 
scenarios. Compare CPT-integrated vs. 
risk-neutral models

Next Steps

1. Collect human teleoperation data in 2D navigation environment with obstacles and time delays
2. Compare ML architectures: Autoencoder, VAE, Bayesian Networks, Transformer, Linear baseline
3. Systematic hyperparameter optimization using 3-fold cross-validation
4. Integrate CPT parameters (λ, α, β, γ) to model individual risk profiles

 

2D continuous navigation with static obstacles. Goal-directed tasks with 
collision penalties. Variable communication delays simulate real-world 
teleoperation constraints. 1000 training episodes, 50 test episodes. State: 
robot (x, y, θ), obstacles (x_i, y_i), goal. Actions: (v, ω).

Variational Autoencoder
(VAE), Bayesian Neural 
Networks, Transformer 
(attention-based), 
Standard Autoencoder, 
Linear baseline. 3-fold 
cross-validation for 
hyperparameter tuning. 
MSE, success rate, collision frequency. 700 epochs, early stopping at validation 
plateau.
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Space Exploration - Mars/lunar rover teleoperation 
with 10+ minute communication delays. 
Underwater Operations - Deep-sea ROV 
teleoperation with acoustic communication 
constraints. 
Disaster Response  - Emergency robots in areas with 
degraded network infrastructure. 
Medical Teleoperation - Remote surgery with 
network latency considerations.

Understanding human risk preferences in 
time-critical scenarios enables safer human-robot 
collaboration during communication disruptions.


