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Research Question:

This research investigates whether fine-tuning the RFdiffusion model on experimentally validated
TCR-pMHC complex data can enable accurate, structure-conditioned generation of TCR CDR3f3
backbones with high binding complementarity to target epitopes.

Background:

* T cell receptors (TCRs) recognize small antigen peptides
presented by MHC molecules on target cells.

* Binding specificity is driven by the a and B chains, especially
the CDR3p region, which contacts the peptide directly.

* Proper recognition activates the immune system to destroy
abnormal or infected cells.

 De novo TCR design could transform immunotherapy.

e Existing models lack 3D structural awareness, unlike
RFdiffusion (Baker Lab, 2023), which generates protein
backbones using rotationally equivariant diffusion.
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Model Framework and Training Plan:

* Fine-tuning RFdiffusion, a denoising diffusion probabilistic model that generates 3D protein
backbones by iteratively denoising residue coordinates and orientations.

* Each residue represented as a rigid frame (Ca coordinate + 3x3 rotation matrix).

 Conditioned on epitope (pMHC) structure and interface hotspot residues to guide TCR-epitope
complementarity.

* Trained to minimize MSE loss between predicted and native residue frames, learning to reverse
the noise process.

e Uses self-conditioning to stabilize denoising and improve sample consistency.

 Generated backbones passed to ProteinMPNN for sequence design compatible with predicted
structures.

* Evaluated using Ca RMSD, interface TM-score, and AlphaFold/TCRDock revalidation for
structural plausibility.

Data Collection and Filtering:
* Source: Experimentally solved TCR-pMHC complexes from
the TCR3d database (~300 observations).
* Fields: {Peptide, TRBV, TRBJ, CDR36, PDB ID}
* Annotation: V/J gene calls and numbering via ANARCI.
* Processing: TCRDock + AlphaFold refinement
* Filtering:
e Co RMSD <2 A vs experimental
* Human only (restrict to HLA-A*02:01 allele)
* Binders (positive pairs) only
e OQutput: Extract Ca coords + rigid frames for pMHC

(condition) and TCR/CDR3p (target) = inputs for RFdiffusion
fine-tuning. Ca coords + 3x3 rigid frames
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Future Work:
* Implement and fine-tune the proposed epitope-conditioned RFdiffusion model using curated
TCR pMHC structural data.
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