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Research Question

How can advanced reasoning capabilities such as
attribution, counting, event reasoning, reverse
reasoning, and counterfactual inference be effectively
modeled and evaluated in VideoQA systems?

Background

State-of-the-art VideoQA models mostly handle
surface-level Q&A and struggle with deeper
temporal/causal reasoning (order, cause, “what-if”
scenarios), limiting reliability in real-world use.

This work targets the gap by defining and evaluating
tasks for attribution, counting, event/reverse
reasoning, and counterfactual inference on real-
world videos. The goal is to make models both more
accurate and explainable.

Real-world Traffic Video Sequence from a Four-way Intersection _ :
- NN OO OO O T VideoQA Model Interaction
?—i- . — 3 : W ‘ Q Why is the southbound traffic congested?
e ot S L R R

[p - Lane closures due to construction are

. L,j A causing congestion.
: ~ "".‘p ? = 3
Roadsce " " Is there space for the cyclist to ride @

R EEEEEREEEREEEREEREEREREER R
Traffic Camera - - ‘ safely? Q =
== . Ry . Restricted space due to lane closures , m

| I—

g’ requires caution from the cyclist. A."?

§ (\m ' Q What direction is the bus moving in?

'g i g"-_‘-?f‘-_"'-;-"z; : . . e "" There is a bus moving straight J

S © . At “233 4 o e o .,-".-’ ] ,rn,’,,'ff,.'; 2 ‘ 51_,0 A towards the South.

- l e gy A e R SR e R [ .

= ‘ . Ry e L T et »..-;a”ft —— Are there any traffic violations? q g

= Long Videos! - A e K v |In eastbound traffic, the black sedan is &=
over-extended into the cross'.-zalk.A'Ey'?

Too Many Events
to Observe!

3 Which details indicate a busy city inter

o Q section?

. . . . L
o~ Heavy traffic and large commercial buildings
5;.2 A that indicate a busy city intersection. J

»;‘{%’x "'A B

{8_sf0 8 SRS
> _-,’f . e "“ -~ ‘l“"
6 ) - e A 4 of

Number of Questions

Contributions

e Defines five reasoning tasks: attribution, counting,
event, reverse, counterfactual.

e Curates targeted real-world QA splits for these
tasks.

e Fine-tunes SOTA VideoQA models (Qwen 2.5 7b VL,
Intern VL38b).

e Designs metrics and ablations to measure accuracy
and generalization.
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Evaluations

This study found that fine-tuned models
achieved a ~*5-10% accuracy
improvement over non-fine-tuned
baselines, with the largest gains on
attribution and event/reverse reasoning
(+6-9 pts), moderate gains on counting
(+4—7 pts), and smaller but consistent
gains on counterfactuals (+2—4 pts).
Performance was stronger on vehicular
and daytime splits and dipped under
occlusion and low-light conditions.
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