

Machine Learning Enabled Prediction of Lithium-Ion Battery Degradation

Ari Everett, Computer Science

Mentor: Dr. Nicholas Rolston, Assistant Professor

School of Electrical, Computer & Energy Engineering

Introduction

Batteries are a pillar of modern energy, but forecasting their degradation remains a major challenge. **Electrochemical Impedance Spectroscopy (EIS) and Machine Learning (ML)**

offer complementary ways to address this problem where EIS provides a non-invasive, info-rich reading, while ML builds predictive models that link these signals to capacity and health. This research applies **Gaussian Process Regression (GPR)** and **eXtreme Gradient Boosting (XGB)**

to map EIS to capacity, identify degradation patterns, and improve data-driven forecasting of battery **state of health (SoH)**. GPR offers interpretability and uncertainty estimation. XGB is explored for faster, scalable ensemble learning for higher accuracy and transferability.

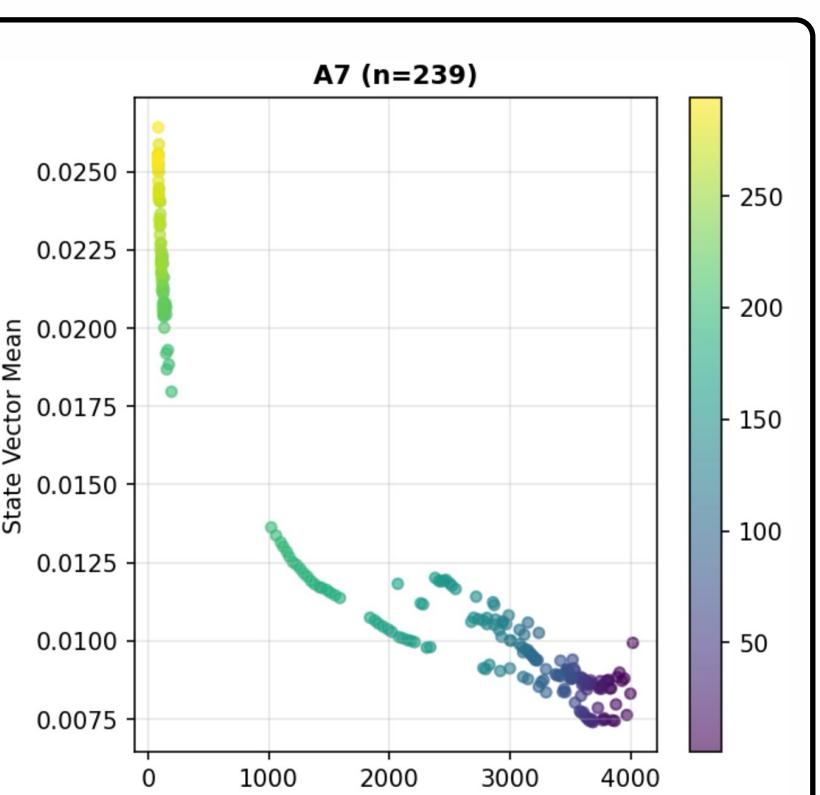


Fig. 1 Battery Degradation Curve: Captured data shows capacity consistently declines and impedance increases with cycle number, showing typical battery aging over time. This trend provides the basis for this research and motive using EIS and machine learning to predict health from impedance data

Methods

Collect: EIS data at multiple charge rates and temps; clean, normalize, and extract impedance features from Nyquist spectra.

Construct: state vectors combining real & imaginary impedance across frequencies.

Bin: data by capacity ranges to balance degradation levels and reduce temporal bias.

Split: **Leave-One-Subject-Out (LOSO)** validation to test model generalization.

Train: GPR and XGB to learn EIS to capacity relationships and predict battery degradation.

Analyze: feature importance w/ **Automatic Relevance Determination (ARD)** to see impedance ranges that impact predictions.

Compare: model accuracy on test data using regression metrics (**R²**, **RMSE**, **MAE**, **MSE**).

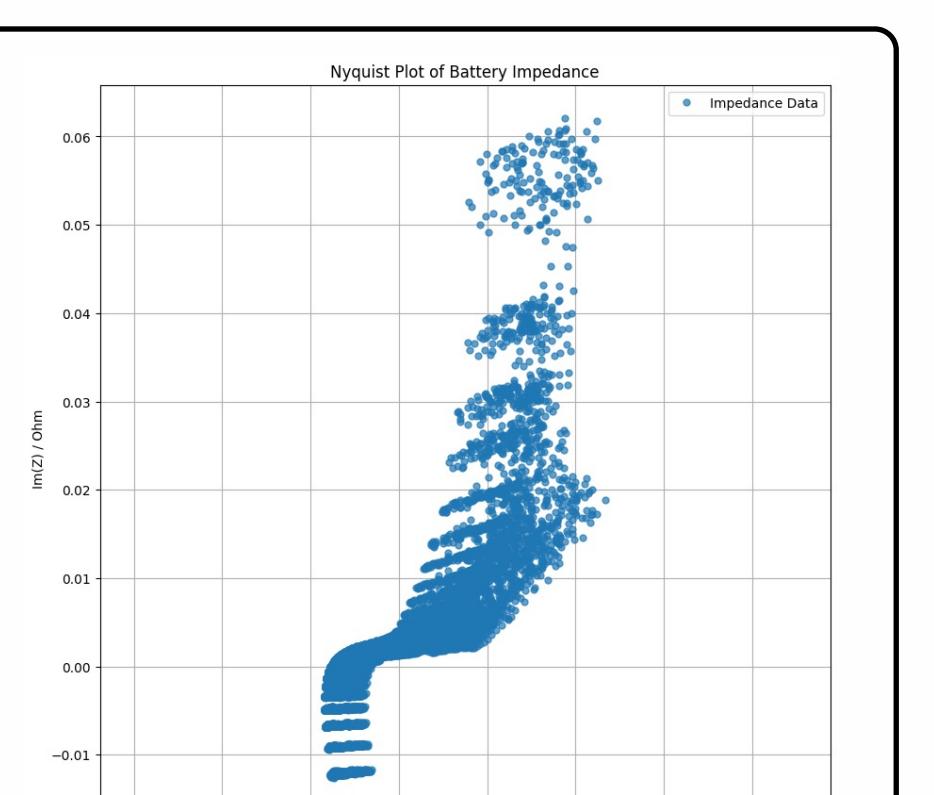


Fig. 4 Data Integrity: Nyquist plot from collected EIS data showing a typical impedance curve, with high frequencies near the lower tail and mid to low frequencies forming the semicircular region. The systematic shift in the high-frequency tail suggests behavioral changes that may have led to the elevated feature importance seen in the ARD analysis

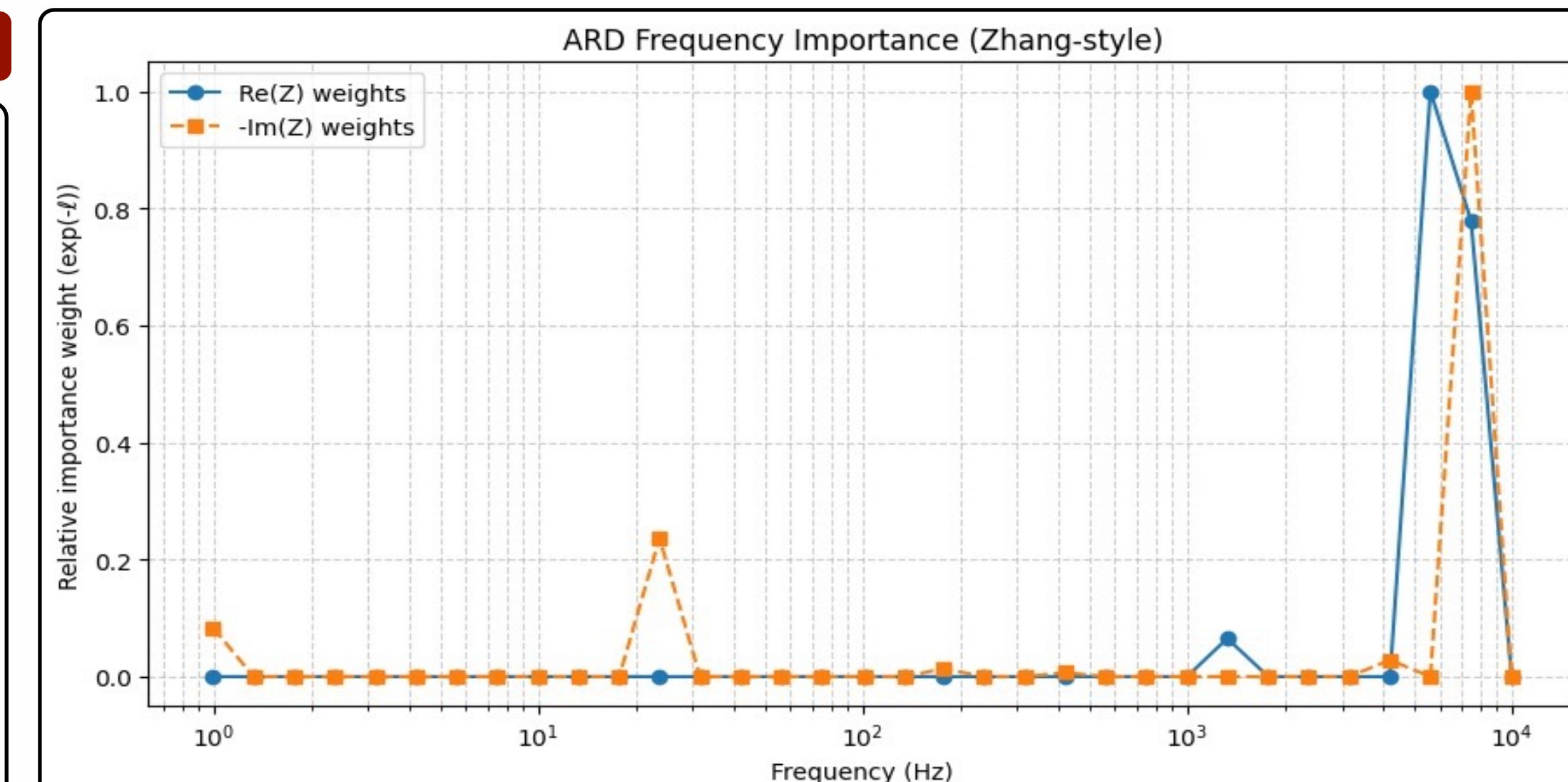


Fig. 5 Feature importance: Frequency Weighting

Experiment: ARD analysis identified which impedance frequencies most influenced model performance

Findings: Unlike prior studies emphasizing 1–100 Hz, higher importance appeared in the **10³–10⁴ Hz** range, suggesting a shift toward high-frequency sensitivity

Analysis: Results indicate possible effects from data balance or preprocessing, warranting further study of frequency weighting and model interpretation

Results

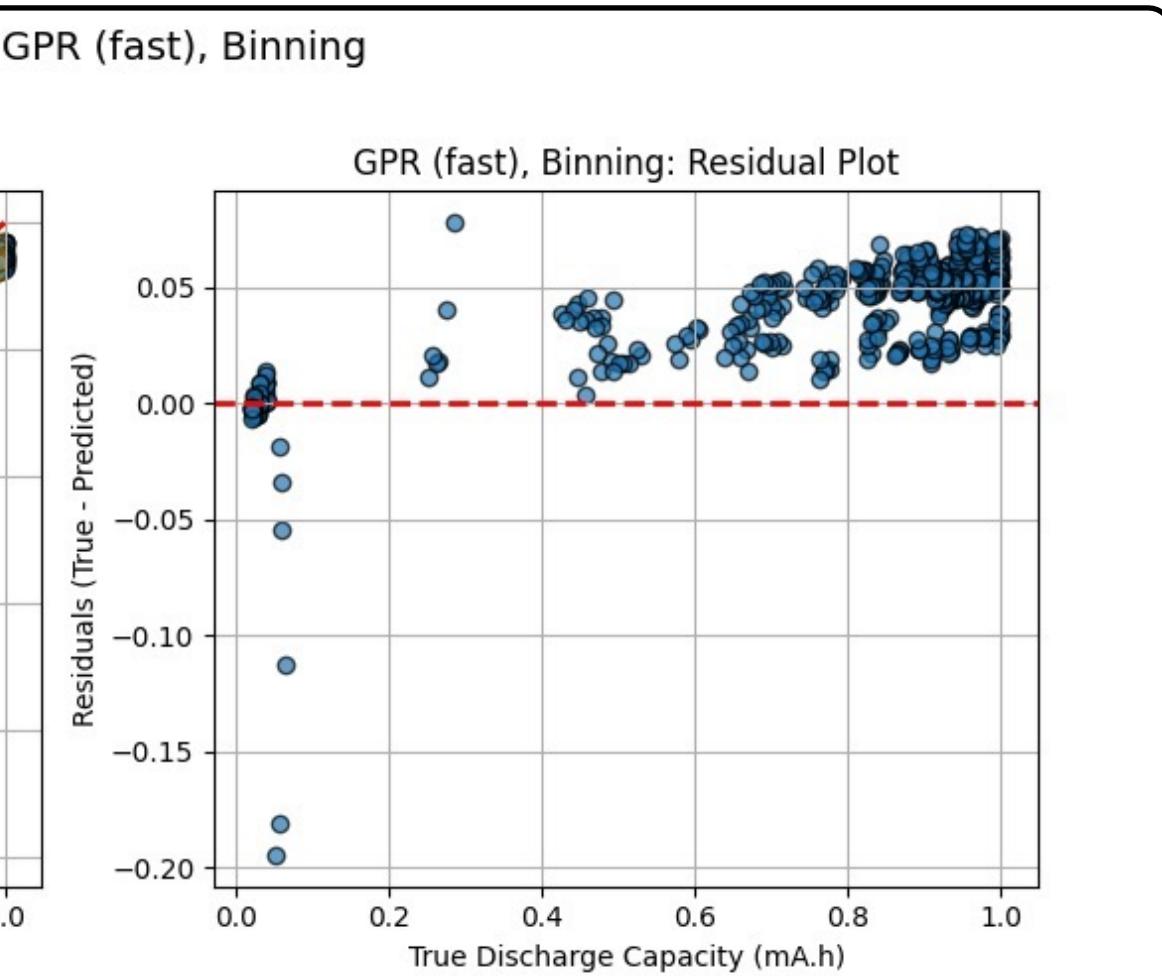


Fig. 2 GPR performance: binned GPR model achieved **R² = 0.87**, **RMSE = 0.06**, and **MAE = 0.04**, showing a trend with variability between predicated and true capacities

Predictive behavior: GPR captured general degradation trends with consistent confidence intervals but showed moderate variability across cells

Residual analysis: Errors remain near zero but increased a bit at lower capacities, may have limits in kernel generalization

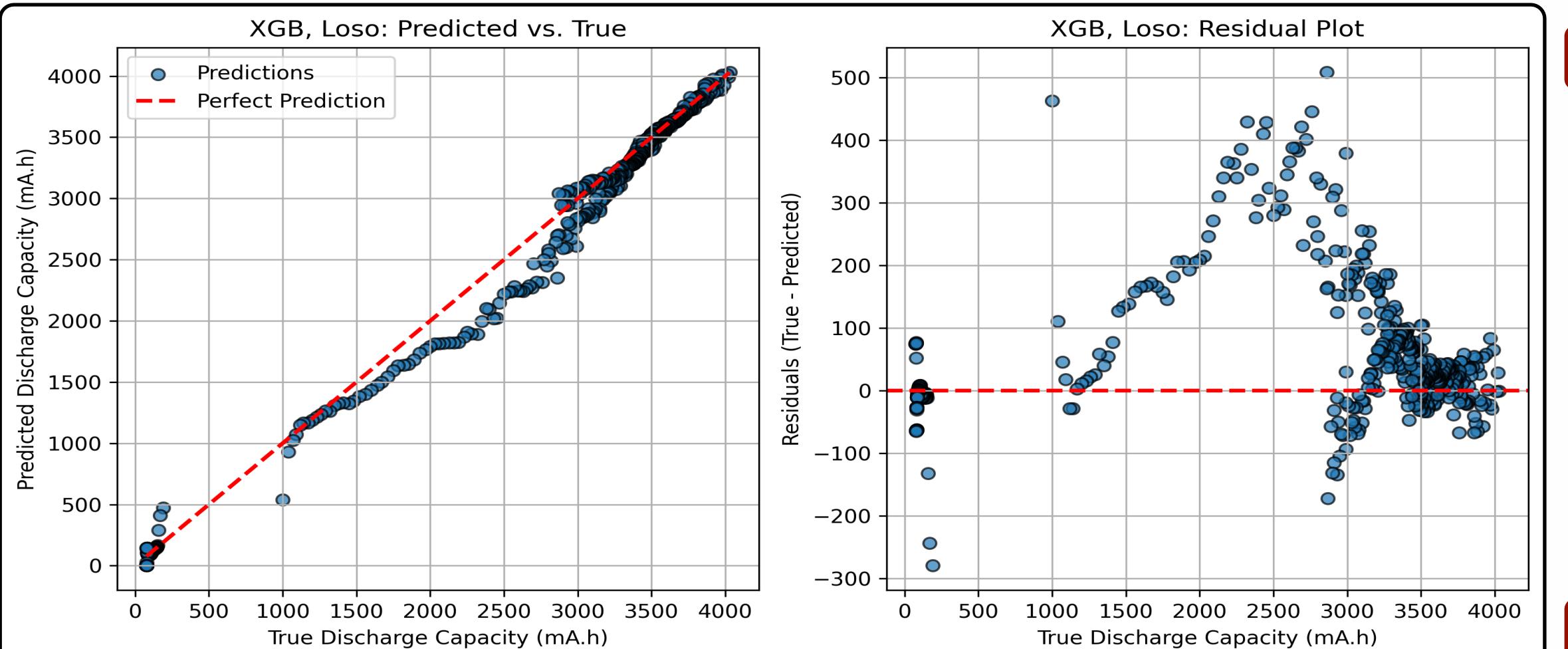


Fig. 3 XGB performance: binned + LOSO XGB model achieved **R² = 0.992**, **RMSE = 116.8**, **MAE = 71.3**, showing strong overall correlation but large absolute errors in predicted capacity

Generalization: LOSO indicates transferability across cells, but accuracy weakens for certain capacity ranges/cells

Residual behavior: large, not evenly distributed, suggesting bias and pointing to improvements in preprocessing, feature scaling, and frequency selection

Conclusions

GPR achieved moderate accuracy w/ **R² = 0.87**, **RMSE = 0.06** and captured general degradation trends, while **XGB** performed stronger at **R² = 0.99**, but less precise at **RMSE = 116.7** and generalized better under **LOSO**. **XGB** showed larger residual errors, revealing the need for improved preprocessing and feature scaling.

Capacity binning improved data balance but may have reduced the visibility of long-term degradation trend, while **ARD analysis** indicated unexpected high-frequency weighting at **10³–10⁴ Hz**, highlighting areas for refinement in data processing, physical interpretation, and more experimenting.

Future Work

Improve data preparation and grouping to better track how batteries age over time.

Adjust models to make predictions more stable and consistent across different cells.

Test lower frequency ranges to confirm the unusual high-frequency behavior and improve data pipeline.

FURI

References & Acknowledgements

1. Zhang, X. et al. *Nat. Commun.* 2020, **11**, 15235
2. Margoschis, S. *ASU Thesis*, 2024
3. Rolston, N. et al. *NEI STC Tech. Vol.*, 2023

Special thanks to Dr. Nicholas Rolston for mentorship, Nithin Jakrebet for guidance, Patricio Solana and the Rolston Labs team for data collection, & my friends and family for support

ASU Ira A. Fulton Schools of **Engineering**
Arizona State University