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Analysis: Results indicate possible effects from data balance or preprocessing, warranting
further study of frequency weighting and model interpretation
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general degradation trends, while XGB performed stronger at R = 0.99, but
less precise at RMSE = 116.7 and generalized better under LOSO. XGB showed
larger residual errors, revealing the need for improved preprocessing and
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Fig. 2 GPR performance: binned GPR model achieved R? = 0.87, RMSE = 0.06, and Fig. 3 XGB performance: binned + LOSO XGB model achieved R? = 0.992, RMSE = 116.8, MAE = Improve data preparation and grouping to better track how batteries age over
MAE = 0.04, showing a trend with variability between predicated and true capacities  71.3, showing strong overall correlation but large absolute errors in predicted capacity time.

Predictive behavior: GPR captured general degradation trends with consistent Generalization: LOSO indicates transferability across cells, but accuracy weakens for certain Adjust models to make predictions more stable and consistent across different
confidence intervals but showed moderate variability across cells capacity ranges/cells cells.

Residual analysis: Errors remain near zero but increased a bit at lower capacities, Residual behavior: large, not evenly distributed, suggesting bias and pointing to improvements Test lower frequency ranges to confirm the unusual high-frequency behavior
may have limits in kernel generalization in preprocessing, feature scaling, and frequency selection and improve data pipeline.
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