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Fig. 2 GPR performance: binned GPR model achieved R² = 0.87, RMSE = 0.06, and 
MAE = 0.04, showing a trend with variability between predicated and true capacities

Predictive behavior: GPR captured general degradation trends with consistent
confidence intervals but showed moderate variability across cells

Residual analysis: Errors remain near zero but increased a bit at lower capacities, 
may have limits in kernel generalization

Improve data preparation and grouping to better track how batteries age over 
time.
Adjust models to make predictions more stable and consistent across different 
cells.
Test lower frequency ranges to confirm the unusual high-frequency behavior 
and improve data pipeline.

Collect: EIS data at multiple charge rates and 
temps; clean, normalize, and extract 
impedance features from Nyquist spectra.
Construct: state vectors combining real & 
imaginary impedance across frequencies.
Bin: data by capacity ranges to balance 
degradation levels and reduce temporal bias.
Split: Leave-One-Subject-Out (LOSO) 
validation to test model generalization.
Train: GPR and XGB to learn EIS to capacity 
relationships and predict battery degradation.
Analyze: feature importance w/ Automatic. 
Relevance Determination (ARD) to see 
impedance ranges that impact predictions.
Compare: model accuracy on test data using 
regression metrics (R², RMSE, MAE, MSE).

Fig. 5 Feature importance: Frequency Weighting
Experiment: ARD analysis identified which impedance frequencies most influenced 
model performance

Findings: Unlike prior studies emphasizing 1–100 Hz, higher importance appeared in the 
10³–10⁴ Hz range, suggesting a shift toward high-frequency sensitivity

Analysis: Results indicate possible effects from data balance or preprocessing, warranting 
further study of frequency weighting and model interpretation

Fig. 3 XGB performance: binned + LOSO XGB model achieved R² = 0.992, RMSE = 116.8, MAE = 
71.3, showing strong overall correlation but large absolute errors in predicted capacity

Generalization: LOSO indicates transferability across cells, but accuracy weakens for certain 
capacity ranges/cells

Residual behavior: large, not evenly distributed, suggesting bias and pointing to improvements 
in preprocessing, feature scaling, and frequency selection

Fig. 1 Battery Degradation Curve: 
Captured data shows capacity 
consistently declines and impedance 
increases with cycle number, showing 
typical battery aging over time. This 
trend provides the basis for this 
research and motive using EIS and 
machine learning to predict health 
from impedance data

Results

GPR achieved moderate accuracy w/ R² = 0.87, RMSE = 0.06 and captured 
general degradation trends, while XGB performed stronger at R² = 0.99, but 
less precise at RMSE = 116.7 and generalized better under LOSO. XGB showed 
larger residual errors, revealing the need for improved preprocessing and 
feature scaling.
Capacity binning improved data balance but may have reduced the visibility of 
long-term degradation trend, while ARD analysis indicated unexpected high-
frequency weighting at 10³–10⁴ Hz, highlighting areas for refinement in data 
processing, physical interpretation, and more experimenting.

Batteries are a pillar of modern energy, but 
forecasting their degradation remains a major 
challenge. Electrochemical Impedance 
Spectroscopy (EIS) and Machine Learning (ML) 
offer complementary ways to address this 
problem where EIS provides a non-invasive, 
info-rich reading, while ML builds predictive 
models that link these signals to capacity and 
health. This research applies Gaussian Process 
Regression (GPR) and eXtreme Gradient 
Boosting (XGB) to map EIS to capacity, identify 
degradation patterns, and improve data-driven 
forecasting of battery state of health (SoH). 
GPR offers interpretability and uncertainty 
estimation. XGB is explored for faster, scalable 
ensemble learning for higher accuracy and 
transferability.

Fig. 4 Data Integrity: Nyquist plot from 
collected EIS data showing a typical 
impedance curve, with high frequencies 
near the lower tail and mid to low 
frequencies forming the semicircular 
region. The systematic shift in the high-
frequency tail suggests behavioral changes 
that may have led to the elevated feature 
importance seen in the ARD analysis

Conclusions
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