

Enhancing Semiconductor Memristors with Halide Perovskites

Diego Curiel, Electrical Engineering

Mentor: Nicholas Rolston, Assistant Professor | Saivineeth Penukula, PhD student
School of Electrical, Computer and Energy Engineering

Introduction

Traditional semiconductor materials face challenges in balancing performance, stability, and cost. Halide perovskites offer a promising alternative due to their tunable electronic properties and low-cost, solution-based fabrication. These materials can be easily formed into thin films on transparent conductive substrates like indium tin oxide (ITO). This research explores the use of perovskite materials in memristor devices, electronic components that change resistance based on applied voltage and retain memory of previous states. By investigating different top electrode materials, this study aims to enhance the electrical switching behavior and stability of perovskite-based memristors for next-generation semiconductor applications

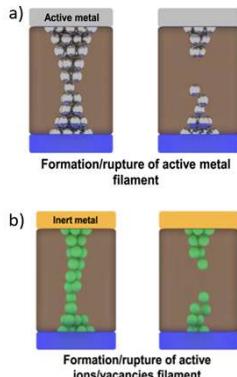


Figure 1: (a) Under an applied voltage, active metal atoms migrate through the perovskite layer to form a conductive filament. Reversing the voltage breaks the filament, switching the device between low and high resistance states. (b) movement of ions or vacancies within the perovskite is forming and rupturing conductive paths that control the device's resistance.

Results

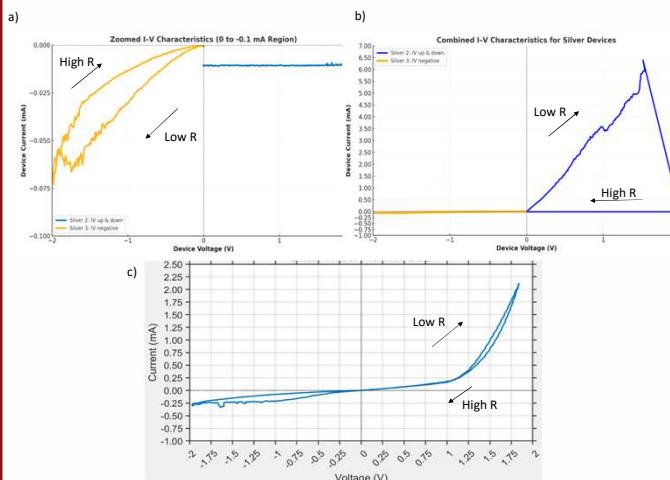


Figure 3: (a) Silver RS negative, (b) Silver RS positive, (c) Carbon positive and negative combined. R is defined as Resistance

Procedures

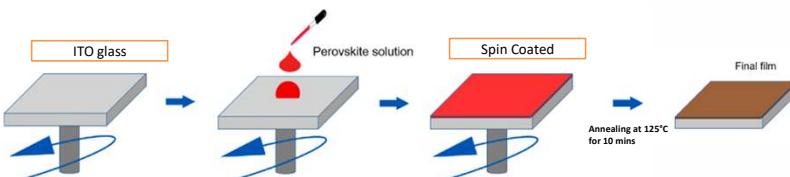


Figure 2: Demonstrates the process of applying the perovskite solution ($\text{Cs}_{0.2}\text{FA}_{0.8}\text{PbI}_3$) onto the ITO glass. With the exception of adding an extra layer of polymer PMMA (polymethyl methacrylate)

Observations

Effects of Carbon Electrode

- A slight resistive switching was observed in the devices. The addition of the polymer introduced a negative effect on performance, whereas the electrode without the polymer layer exhibited better stability. Despite some disruption in both cases, the system demonstrated a clear reaction, indicating a complete and successful switching process.

Effects of Silver Electrode

- The device exhibited a clear resistive response due to the intrinsic properties of the active metal. It showed greater stability at the positive end and produced a reaction similar to the carbon-based electrode, though with slightly lower resistance.

Future Endeavors

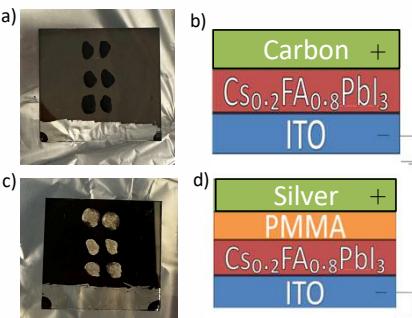


Figure 4: (a) Photograph of a carbon-based electrode on an indium tin oxide (ITO) film, where positive ions accumulated on the electrode and negative ions on the exposed ITO area. (b) Representation of 4a (c) Photograph of a silver-based electrode with a thin poly(methyl methacrylate) (PMMA) layer to enable charge transport and conduction of the active metal. (d) Representation of 4b.