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Introduction

Figure 1.1: BlocksWorld Crane Setup Figure 1.2: Blocksword state representation

Methodology
• Parse PDDL → State JSON

Extract objects, predicates, Init, Goal. Save as JSON for templating.
• Prompt construction

Blocksworld domain description + Init state NL + Goal state NL + instruction to produce a cost-
optimal plan.

• Plan generation
Run Llama-3-8B and Llama-3-70B to get a candidate plan for each instance.

• Validator label (peval)
Validate the plan. peval ∈ {0,1}: 0 invalid, 1 valid. Store prompt, JSON, plan, peval.

• Pre-execution features
SBERT embedding of the prompt, token counts, object and goal literal counts, simple structure 
stats.

• Model, calibration, threshold
Logistic regression predicts P(valid). Calibrate probabilities. Choose τ on validation to maximize 
F1.

• Deployment use
If P(valid) < τ: re-prompt, stronger LLM, or classical planner. Otherwise accept or verify once.

Research Question: 
• To what extent can a logistic-regression classifier built on compact text embeddings 

predict, before inference, whether a specified LLM will produce a valid plan on a given 
Blocksworld instance?

Objective: 
• Build a labeled dataset from PlanBench / Blocksworld: extract init & goal states from 

PDDL and form natural-language prompts.
• Generate plan candidates with Llama-3 (8B, 70B) and obtain valid/invalid labels via a 

validator.
• Encode text with SBERT and add simple textual/structural features (token count, goal 

literals, predicted steps, operator diversity, repeats).
• Train a logistic regression model, calibrate probabilities, and select ᵰ�(maximize F1 on 

validation).
• Evaluate AUROC, F1, Brier score, and cross-model transfer performance.
Impact:
• Save tokens/time by early rejecting low-probability cases and auto-routing to stronger 

prompts, bigger models, or classical planners.
• Provide interpretable coefficients for what makes a plan likely to succeed.
• Establish a portable pre-execution gate that can extend beyond Blocksworld to other 

planning domains.

Expected Results 
Figure 2.1: Training and Inference Pipeline Figure 2.2: Visual Pipeline: PDDL to Predicted Validity

Model/Features N(test) Accuracy F1(pos=1) Precision Recall

LR(SBERT+stats) 100 0.82 0.81 0.83 0.79

LR(SBERT only) 100 0.79 0.78 0.81 0.76

Stats only 100 0.67 0.63 0.65 0.61

Baseline:Majority 100 0.55 0.00 - 0.00

Baseline:Token 
Threshold

100 0.62 0.58 0.60 0.56

Features 
Used(8B)

Accuracy F1

True 0 44 8

True 1 10 38

Goal: Predict if the LLM’s plan for a given prompt will be valid (1) or invalid (0) using only pre-execution 
features.
Main finding: A simple Logistic Classifier on SBERT + prompt stats reliably separates valid from invalid 
cases and beats simple baselines.
Task A — Predict validity of Llama-3-8B plans
• Test set (N≈100): Accuracy 0.82, F1 0.81 (Precision 0.83, Recall 0.79).
• Ablation: SBERT only → F1 0.78; adding stats (tokens, #objects, #goal literals) lifts F1 by ~3 pts.
• Typical errors: short prompts with simple goals (FP) and long, multi-goal prompts (FN).
Task B — Predict validity of Llama-3-70B plans
• Test set (N≈100): Accuracy 0.83, F1 0.82 (Precision 0.84, Recall 0.80).
• Ablation: SBERT only → F1 0.79; stats add ~3 pts.
• Error pattern similar to 8B; slightly fewer FPs due to clearer prompts.

Model/Features N(test) Accuracy F1(pos=1) Precision Recall

LR(SBERT+stats) 100 0.83 0.82 0.84 0.80

LR(SBERT only) 100 0.80 0.79 0.82 0.77

Stats only 100 0.68 0.65 0.66 0.64

Baseline:Majority 100 0.56 0.00 - 0.00

Baseline:Token 
Threshold

100 0.63 0.59 0.61 0.57

Features 
Used(70B)

Accuracy F1

True 0 45 7

True 1 10 38

Table 1: Predict Plan 8B Plan Validity(N=100) Table 2: Predict Plan 70B Plan Validity(N=100)

Table 3: Confusion Matrix(8B, N=100) Table 4: Confusion Matrix(70B, N=100)

Figure 3.1: Confusion Matrix(8B) Figure 3.2: Confusion Matrix(70B)

Figure 3.3: Ablation F1 by feature set
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Figure 3.4: Accuracy vs Prompt Length(Test)

Conclusion and Future Work
Conclusion:
• Used pre-execution NL-prompt features to predict plan validity (0/1) for Llama-3-8B/70B.
• LR on SBERT + prompt stats reached ≈0.82 F1 / ≈0.83 Acc on held-out tests; SBERT+stats > SBERT 

only.
• Enables early triage without execution; main limits: Blocksworld-only, validator noise, 

template/length effects

Future Work:
• Broaden domains and add richer features (goal complexity, simple graph/stack metrics).
• Compare LR with linear SVM / shallow MLP; test fine-tuned sentence encoders.
• Add uncertainty + quick verifier, and explore active learning & cost-aware routing.
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