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Introduction Methodology

Research Question: e Parse PDDL - State JSON SBERT pooling (prompt - embedding): Feature vector (embed + stats):
* To what extent can a logistic-regression classifier built on compact text embeddings Extract objects, predicates, Init, Goal. Save as JSON for templating. 1 P——
predict, before inference, whether a specified LLM will produce a valid plan on a given * Prompt construction u= ;ZLI h, U= II:ETI x = [u; s'|withs' = #
Blocksworld instance? Blocksworld domain description + Init state NL + Goal state NL + instruction to produce a cost- 2 train
Objective: optimal plan.
* Build a labeled dataset from PlanBench / Blocksworld: extract init & goal states from * Plan generation
PDDL and form natural-language prompts. Run Llama-3-8B and Llama-3-70B to get a candidate plan for each instance. . o .
. . Label (from validator): Logistic regression (0/1 output):
* Generate plan candidates with Llama-3 (8B, 70B) and obtain valid/invalid labels via a Validator label (peval) ( ) - - (o/ put)
validator Validate the plan. peval € {0,1}: 0 invalid, 1 valid. Store prompt, JSON, plan, peval. )
: ) _ — T S
* Encode text with SBERT and add simple textual/structural features (token count, goal * Pre-execution features y = peval €{0, 1} z=wx+b, y=1, l1+e-z = 0. 5]
literals, predicted steps, operator diversity, repeats). SBERT embedding of the prompt, token counts, object and goal literal counts, simple structure
* Train a logistic regression model, calibrate probabilities, and select 7(maximize F1 on stats.
validation). * Model, calibration, threshold Training loss:
« Evaluate AUROC, F1, Brier score, and cross-model transfer performance. Logistic regression predicts P(valid). Calibrate probabilities. Choose T on validation to maximize
. F1. _1 2
Impact: o . L=" 2 —yiloga(z,) — (1 —y;)log(1 —0(z,))] + Al|wll2
» Save tokens/time by early rejecting low-probability cases and auto-routing to stronger ep oy-men use _ _ _
orompts, bigger models, or classical planners If P(valid) < t: re-prompt, stronger LLM, or classical planner. Otherwise accept or verify once.
* Provide interpretable coefficients for what makes a plan likely to succeed. LLM(Llama 88 or T0B) SBERT Transformer
* Establish a portable pre-execution gate that can extend beyond Blocksworld to other \ijm““ Logistc Regression Neural Network
plannlng domalns' Eﬂl&?“tirzzr”!g; ﬁ‘:::‘;“'s(’itup (arm feft of Block 4 Onflf:;:/ Griable. | Blockhbove | Block Balow 1002 Instances | ] e Training the LR Model Threshold = 0.5 4 PredICted
. P == A Output
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Figure 1.1: BlocksWorld Crane Setup Figure 1.2: Blocksword state representation i _ . . T Fi 2.2: Vi | Piveline: PDDL to Predicted Validi
igure 2.1: Training and Inference Pipeline igure 2.2: Visual Pipeline: to Predicted Validity

Expected Results “Conclusion and Future Work

Goal: Predict if the LLM’s plan for a given prompt will be valid (1) or invalid (0) using only pre-execution Confusion Matrix —_Task A (88 test Confusion Matrix —Task & (70B test Ablation — F1 by feature set Conclusion:
feat.ure.s. _ . o - . _ - ) o8 7o  Used pre-execution NL-prompt features to predict plan validity (0/1) for Llama-3-8B/70B.
Main finding: A s..lmple Logls:tlc Classifier on SBERT + prompt stats reliably separates valid from invalid 07} * LR on SBERT + prompt stats reached =0.82 F1 / =0.83 Acc on held-out tests; SBERT+stats > SBERT
cases and beats simple baselines. _ o6 only.
Task A — Predict validity of Llama-3-8B plans N _05 * Enables early triage without execution; main limits: Blocksworld-only, validator noise,
e Test s?t (N=100): Accuracy 0.82, F1 0'.81 (Precision 0.83, Rgcall 0.79). | | v g oar template/length effects
* Ablation: SBERT only - F1 0.78; adding stats (tokens, #objects, #goal literals) lifts F1 by ~3 pts. o 0.3
: Typical erro-rs: Sh?":’ prompts with Simple goals (FP) and Iong, mUIti-goaI prompts (FN) Figure 3.1: Confusion Matrix(8B) Figure 3.2: Confusion Matrix(70B) o2 Future Work:
Task B — Predict validity of Llama-3-70B plans N 011 * Broaden domains and add richer features (goal complexity, simple graph/stack metrics).
* Testset (N=100): Accuracy 0.83, F1 0.82 (Precision 0.84, Recall 0.80) 1 OO T onl e s o0 * Compare LR with linear SVM / shallow MLP; test fine-tuned sentence encoders.
* Ablation: SBERT only - F1 0.79; stats add ~'3 pts. 2 X Precision X Recall True 0 44 8 True 0 45 7 . » * Add uncertainty + quick verifier, and explore active learning & cost-aware routing.
. . L _ . 3. Ablation F1
Error pattern similar to 8B; slightly fewer FPs due to clearer prompts. Droricing + Porall el o 2 el i 2 Figure 3.3: Ablation F1 by feature set ~
Table 3: Confusion Matrix(8B, N=100) Table 4: Confusion Matrix(70B, N=100) Lor ficcuracy vs Prompt Length (test) o [ R e fe re n C e S
1. M. Fox and D. Long. “PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains.”
LR(SBERT+stats) 100 0.82 0.81 0.83 0.79 LR(SBERT+stats) 100 0.83 0.82 0.84 0.80 o) JAIR, 20:61—124, 2003.
LR(SBERT only) 100 0.79 0.78 0.81 0.76 LR(SBERT only) 100 0.80 0.79 0.82 0.77 2. R. Howey, D. Long, and M. Fox. “VAL: Automatic Plan Validation, Continuous Effects and Mixed
Stats only 100 0.67 0.63 0.65 0.61 Stats only 100 0.68 0.65 0.66 0.64 N Initiative Planning.” Proc. ICAPS Workshop on the Competition, 2004.
Baseline:Majority 100 OleE 0.00 i 0.00 Baseline:Majority - e . ] . o 3. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, 2nd ed. Springer, 2009.
Baseline:Token 100 0.62 0.58 0.60 0.56 Baseline:Token 100 0.63 0.59 0.61 0.57 (Ch 4Z.LOQIStIC ReQreSSIon) “ . . .
Threshold Threshold 05 g e o 4. N. Reimers and |. Gurevych. “Sentence-BERT: Sentence Embeddings using Siamese BERT-
Table 1: Predict Plan 8B Plan Validity(N=100) Table 2: Predict Plan 70B Plan Validity(N=100) Figure 3.4: Accuracy vs Prompt Length(Test) Networks.” Proc. EMNLP, 2019.
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