
GNN-MPC for Path Following of Deformable Bodies
Rocco Barletta, Aerospace Engineering
Mentor: Dr. Leixin Ma, Assistant Professor

Fulton Schools of Engineering

Objective & Research Question: Background:

Methodology:

Results/Outcomes:

Challenges & Future Work:
The goal of this project is to design a framework that uses a Graph Neural 
Network (GNN) embedded in Model Predictive Control (MPC) to achieve 
real-time tracking and control for deformable robots. 

Deformable bodies are notoriously difficult to 
model
• High-fidelity models are too slow for real-time 

applications
• Hand-tuned models break when conditions 

change
This project will investigate whether these methods 
decrease computational effort or improve 
robustness/reproducibility

Represent rope as a chain of points (nodes)
• Assume quasi-static equilibrium for node 

constraints
• Apply external velocity (control input) to head 

node; tail fixed; rest of nodes free (DER constraint)
• Objective: apply control inputs to match shape to a 

prescribed reference shape
MPC for control input optimization integrated with 
DER as plant model
• MPC: performed over prediction & control horizon; 

predict states over prediction horizon and optimize 
future control inputs over control horizon

• Cost function to determine how much to 
punish deviations from the reference, 
large control inputs, and large changes in 
control inputs

• DER: Lightweight elastic rod model that uses 
stretching, bending, and twisting energy to predict 
how shape changes due to control inputs; plant 
model for MPC

References:

MPC: 
• Np = 20
• Nc = 20
• dt = 0.05 s
• ttotal = 5 s

Stability with DER caused early blow-ups in the model
• Solution: Fix tail & quasi-static equilibrium at each step 

as well as guarded bending/twisting
MPC trade-off between smoothness & accuracy
• Control input magnitude penalties often led the 

controller to prefer smaller movements for more 
complicated geometries

Though sufficient, rolling DER repeatedly in a predictive 
controller becomes expensive as the number of nodes or 
horizon increases
• Future direction: GNN plant model with same 

ideology; train GNN on DER data to maintain physics 
accuracy while decreasing computation time & 
processing power

Graph size: 
• nv = 40
• L = 1 m

Fig 3: DER Simulation (Circular Top Node Path)

Fig 2: Closed-Loop MPC 
Diagram

Weights
• wtrack = 200
• wsmooth = 0.05
• wctrl = 0.001
• umax = 0.6 m/s

Fig 4: MPC Simulation (All Node Trajectories vs. Reference)

Fig 5: MPC Simulation 
(Whole Rod Error)

Reference Values:

Fig 6: MPC Simulation 
(Control Input Values)
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Fig 1: Rope Dynamics Snapshots

* Different colors ≡ different nodes *

* Different colors ≡ different nodes *
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