VeriLLM: A Large Language Model-Driven Toolchain for Enhanced Verilog Workflow Optimization

Alex Stephenson, Electrical Engineering
Mentor: Dr. Jeff (Jun) Zhang, Assistant Professor
Ira A. Fulton Schools of Engineering

Background

Verilog, a hardware description language, is
essential for digital circuit design, but current
datasets are too simplistic for large language
models (LLMs) to handle complex, real-world
tasks. Intuitor addresses this by using self-
reward training, inspired by Learning without
External Rewards [1], where the model learns
to minimize KL-divergence across multiple
responses to increase self-confidence without
external labels.

Trained on 720 Verilog problems from the Verithoughts
database [2] with 16 generations per prompt, the model
learns to generalize to unseen Verilog tasks despite
limited data.

Results

Methodology

VeriLLM fine-tunes a QWEN3-14B model using
self-reward training via the Intuitor framework
shown below.
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The fine-tuned VeriLLM also demonstrated
more advanced reasoning techniques
naturally overtime. The self confidence
evaluation (shown right) also quickly peaks and
then collapses, demonstrating specific
parameters.
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The baseline QWEN3-14B model achieved a 51.28% pass
rate on Verilog-Eval2. After self-reward fine-tuning,
VeriLLM improved to a 58.33% pass rate, a 7.05%
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Fig. 3 Self-Confidence over step interval

Conclusion & Future Work

VeriLLM'’s self-reward training boosts Verilog-
LLM performance, confirming Intuitor’s value
in data-scarce domains. Future work aims to
improve pass rates by 15%, explore Al-
generated prompts for complex tasks (e.g.,
NVIDIA’s RTL eval), and integrate VeriLLM into
agentic hardware design tools for streamlined
workflows.

Fig. 1 Training Flow Diagram
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