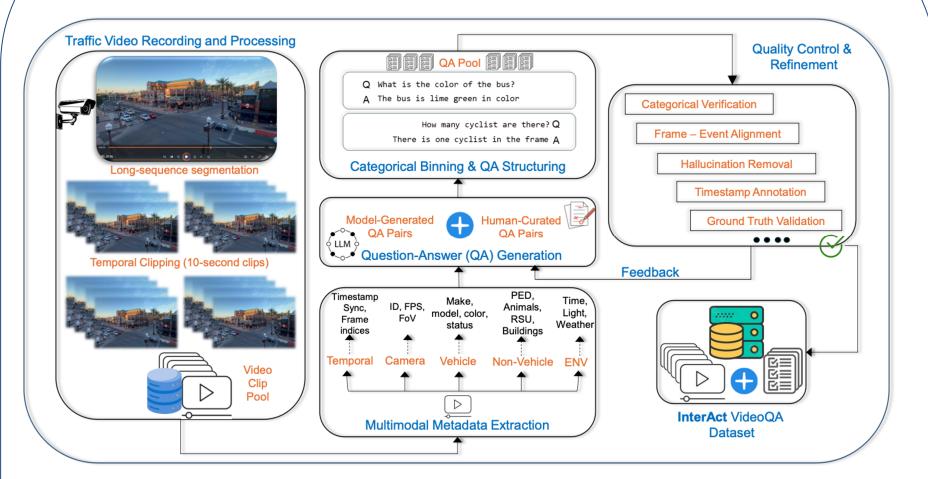
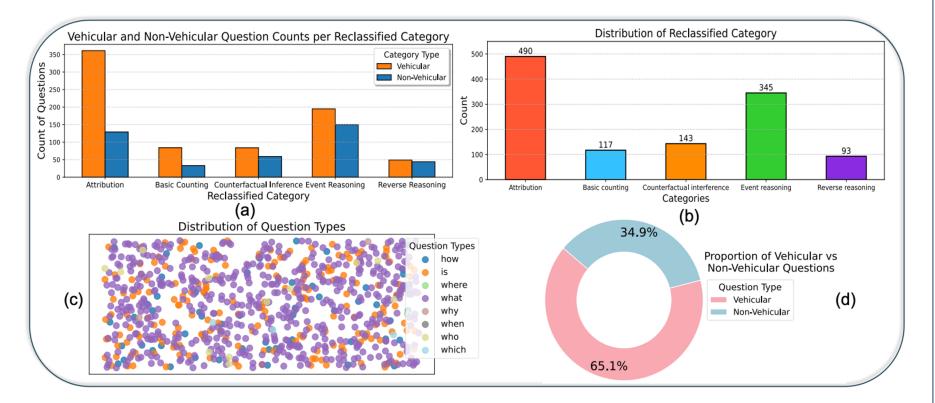
Optimizing Video Question Answering for Traffic Monitoring Systems

Rutuja Patil, BSE Computer Systems Engineering Bharatesh Chakravarthi,

Assistant Teaching Professor, SCAI

Introduction


Problem Statement: Current models struggle with spatiotemporal understanding, tracking multiple events, and high traffic dynamics, limiting their ability to analyze real-world scenarios. To bridge this gap, the InterAct VideoQA dataset is introduced, providing annotated footage and QA pairs for traffic-specific reasoning.


Contributions

- ☐ Comprehensive Data Collection: 8 hours of real-world traffic footage, segmented into 10-second clips with over 25,000 QA pairs covering critical traffic situations.
- ☐ Evaluation of SOTA Video QA Models: Revealing challenges in spatio-temporal reasoning.
- ☐ Fine Tuning and Performance Improvements: Highlights significant gains in accuracy and interoperability by finetuning models for traffic-related tasks.

InterAct VideoQA Pipeline

Question Distribution

InterAct: The dataset features counterfactual, reverse, and event reasoning questions, focusing on spatiotemporal queries and multi-event interactions in traffic scenarios. "What" and "Is" questions dominate, breaking down complex situations into manageable components. This structure helps models interpret overlapping events and distinguish real from hallucinated occurrences.

Quantitative evaluation

Benchmark performance metrics

FineTuning	Questions	VideoLlama2				Llava-NexT-Video					Qwen2-VL-7B-hf					
		BLUE	ROUGE	METEOR	CIDEr	SPICE	BLUE	ROUGE	METEOR	CIDEr	SPICE	BLUE	ROUGE	METEOR	CIDEr	SPICE
After	Basic Counting	-	27.78	29.82	117.52	32.50	-	10.53	22.55	62.04	4.35	-	27.78	29.82	117.52	32.50
	Attribution	1.08	26.01	30.59	84.41	24.25	-	26.27	34.06	91.24	23.83	2.70	27.48	36.09	108.44	27.16
	Event Reasoning	15.15	37.70	51.61	279.44	34.30	15.15	36.14	50.00	298.99	34.40	10.14	34.94	45.45	250.95	31.04
	CounterFactual	-	31.25	31.20	-	18.18	-	31.25	31.20	-	18.18	-	31.25	38.75	-	19.05
	Reverse Reasoning	2.65	24.21	38.22	136.53	23.98	7.39	31.24	39.57	182.07	22.25	16.83	28.44	39.03	253.70	23.82
Before	Basic Counting	_	27.78	29.82	117.20	32.50	_	27.78	29.82	117.20	32.50	_	16.89	37.42	109.07	32.50
	Attribution	0.89	25.66	32.54	87.96	24.40	2.70	27.73	35.59	104.20	24.20	1.67	14.95	47.35	148.11	24.46
	Event Reasoning	-	12.57	47.66	241.75	29.98	10.43	33.68	45.89	235.47	29.98	0.64	12.52	22.05	74.29	8.08
	CounterFactual	-	31.25	31.20	-	18.18	-	31.25	31.20	-	18.18	-	28.00	31.32	-	20.00
	Reverse Reasoning	2.65	23.74	37.33	130.88	22.25	7.39	27.23	37.61	178.02	23.81	0.77	14.95	37.94	130.25	5.88

Conclusion

The study highlights the need for specialized VideoQA datasets like InterAct VideoQA to tackle multi-event traffic challenges. Finetuning models significantly improves accuracy in complex scenarios, aiding traffic monitoring and autonomous systems. As an open-source resource, it invites contributions to support long-term intelligent transportation research.

