# Understanding Fish Propulsion through Fluid Simulations

## Mark Agoston, Mechanical Engineering

Mentor: Dr. Leixin Ma SEMTE



## **Objective and Research question**

How can we optimize fish swimming behavior for highest efficiency under different flow conditions?

- Optimize non-dimensional swimming parameters
- Explore effect of amplitude envelope on thrust and swimming efficiency.
- Develop optimal control methodology to navigate complex flow conditions

#### **Background and Fundamental Equations [1]**

Strouhal number: Reynolds number: **Traveling wave:** 

$$\mathrm{St}=rac{fA}{U}$$

$$Re = \frac{UL}{\nu}$$

$$y = A\sin(kx - \omega t)$$

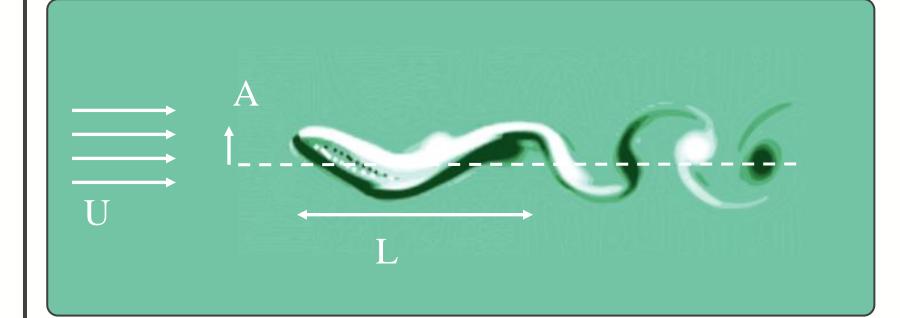
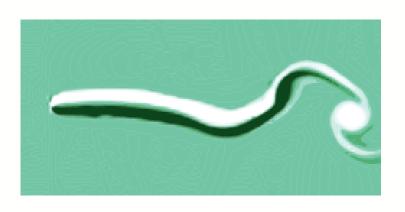




Fig 1. Fundamental variables for anguilliform swimming.

#### **Amplitude Envelope:**

Fish in nature oscillate tail more than the head (amplitude envelope)



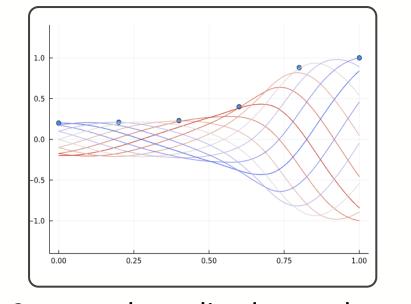



Fig 2. natural amplitude envelope

#### **Preliminary Results**

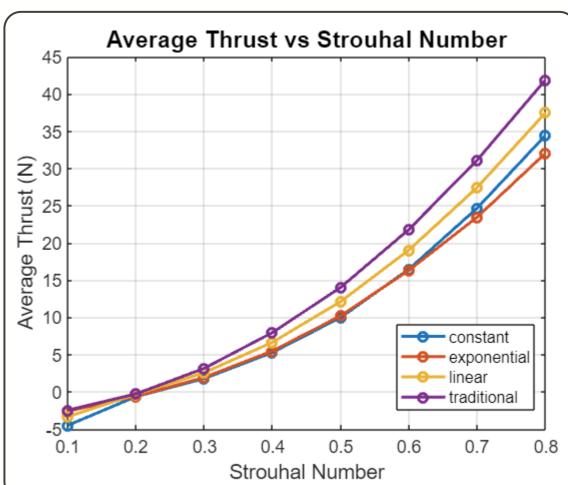



Fig 3. Average thrust vs. Strouhal number

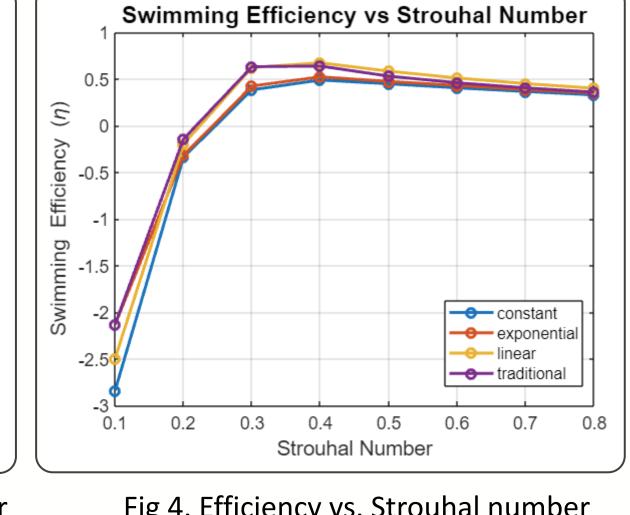
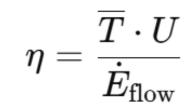
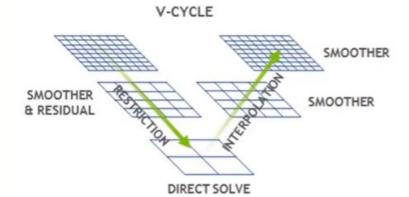



Fig 4. Efficiency vs. Strouhal number

| Re = 1.0e6, U= 1, St = 0.8                       |  |
|--------------------------------------------------|--|
| natural envelope                                 |  |
| Thrust: -2.446 (N)<br>Re = 1.0e6, U= 1, St = 0.8 |  |
| constant envelope                                |  |
| Thrust: 10.24 (N)                                |  |

Fig 5. natural amplitude envelope prevents excess vorticities and increases efficiency


| Table                    | 1: Simula       | ation resu      | lts for natural er  | rvelope |
|--------------------------|-----------------|-----------------|---------------------|---------|
| $\operatorname{St}$      | $ar{F}_x$ (N)   | $\bar{F}_y$ (N) | KE Rate (W)         | $\eta$  |
| 0.1                      | -2.48           | -0.06           | 1.16                | -2.13   |
| 0.2                      | -0.29           | 0.71            | 1.99                | -0.14   |
| 0.3                      | 3.15            | 1.11            | 4.99                | 0.63    |
| 0.4                      | 7.96            | 1.23            | 12.48               | 0.64    |
| 0.5                      | 14.04           | 0.74            | 26.52               | 0.53    |
| 0.6                      | 21.83           | -0.94           | 47.63               | 0.46    |
| 0.7                      | 31.15           | -4.54           | 77.16               | 0.40    |
| 0.8                      | 41.93           | -8.16           | 117.06              | 0.36    |
| Tab                      | ole 2: Simi     | ulation res     | sults for linear en | nvelope |
| $\overline{\mathrm{St}}$ | $\bar{F}_x$ (N) | $\bar{F}_y$ (N) | KE Rate (W)         | $\eta$  |
| 0.1                      | -3.36           | -0.17           | 1.34                | -2.50   |
| 0.2                      | -0.34           | 0.35            | 1.73                | -0.20   |
| 0.3                      | 2.57            | 0.89            | 4.13                | 0.62    |
| 0.4                      | 6.66            | 1.29            | 9.89                | 0.67    |
| 0.5                      | 12.14           | 0.96            | 20.82               | 0.58    |
| 0.6                      | 19.07           | -0.11           | 37.40               | 0.51    |
|                          |                 |                 | 01.10               |         |
| 0.7                      | 27.48           | -1.66           | 61.13               | 0.45    |


## **Methodology for Preliminary Work**

Fluid solver: Waterlily boundary-immersion method solver in Julia language [2]

- Solves incompressible (divergence-free) Navier-Stokes Equations using Finite-volume approach with staggered velocity-pressure grid
- Solved using geometric multi-grid approach

#### **Quantifying Swimming Efficiency:**





 $\overline{T}$  = Average thrust force

U = fish swimming velocity

 $E_{
m flow}$  = total kinetic energy fish movement adds to water per unit time

$$ext{KE}_{ ext{flow}}(t) = rac{1}{2}
ho\sum_{i,j}\left[(u_{i,j}-U)^2+v_{i,j}^2
ight]\Delta A$$

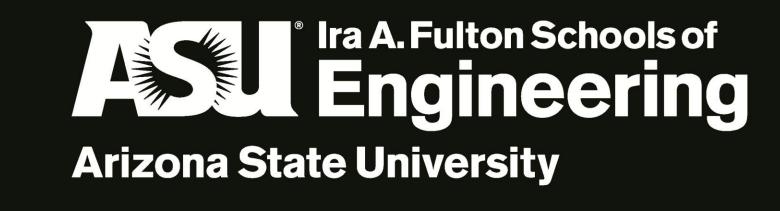
#### **Preliminary Results**

- The results suggest that either a linear or natural amplitude envelope with a **Strouhal number of 0.4 is idea**l for **efficiency**.
- Higher Strouhal number creates significantly higher thrust but also adds much more kinetic energy into the surrounding water, lowering efficiency.

#### **Future Work**

- Modify code to model free-body fish instead of fixed
- Explore control methods (classical PID, model predictive control, reinforcement learning)
- Explore more complex flows (wake of vorticity street)
- Implement egocentric navigation strategy such as in [3]

#### References


[1] M. J. Lighthill, "Note on the swimming of slender fish," *Journal of Fluid Mechanics*, vol. 9, no. 2, pp. 305–317, 1960. doi:10.1017/S0022112060001110 [2] G. D. Weymouth, "Simulation of a swimming dogfish shark," *The Julia Language*, Aug. 12, 2021. [Online]. Available: https://julialang.org/blog/2021/08/sharks/.

[3] D. Fan,L. Yang,Z. Wang,M.S. Triantafyllou,& G.E. Karniadakis, Reinforcement learning for bluff body active flow control in experiments and simulations, *Proc. Natl. Acad. Sci.* U.S.A. 117 (42) 26091-26098, https://doi.org/10.1073/pnas.2004939117 (2020).

#### Acknowledgements

I am very appreciative of Dr. Leixin Ma and Varshitha Janavi in their guidance throughout this project.



