Energy-efficient Wafer Defect Detection using Spiking Neural Networks

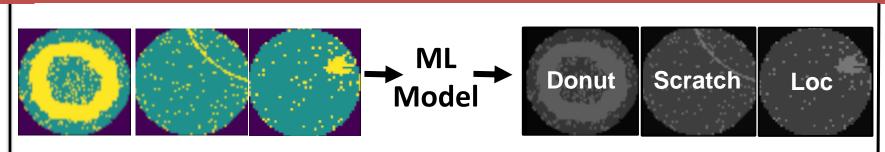
Henry Alexander Lepp, Electrical Engineering B.S.E.

Mentor: Dr. Leslie Hwang, Assistant Professor Electrical, Computer, and Energy Engineering (ECEE)

Impact Statement

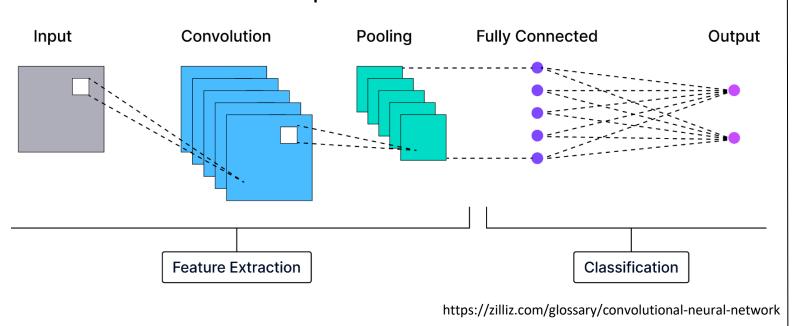
Wafer Defect Classification

Developing an energy-efficient method for silicon defect detection would allow assessment of production techniques in a more sustainable way

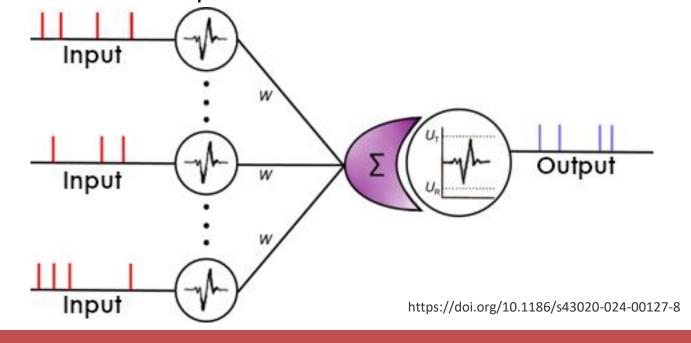


CNN vs. SNN

- Convolutional Neural Networks are a widely-used form of Deep Learning Model
- Feature Extraction
 - Convolution applies "filters" to the image, but increases size
- Pooling reduces size by grouping several pixels into one
- Classification
- Dense layers translate flattened image into output values
- Result is a vector of probabilities



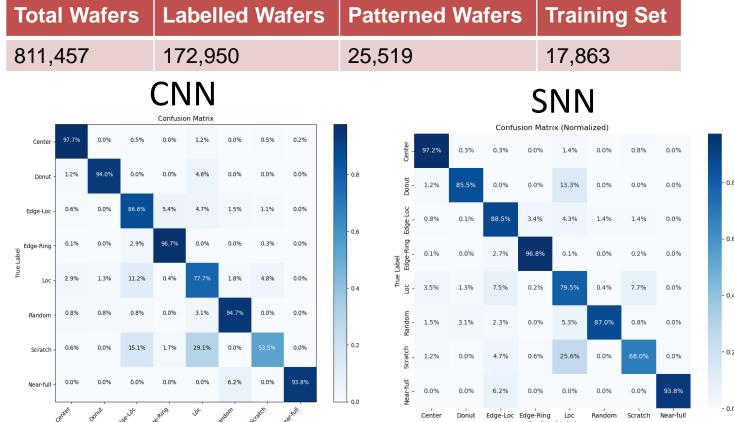
- Spiking Neural Networks mimic real brains
- Feature extraction is similar to CNNs but data is encoded as impulses
- Each impulse increases the neurons membrane potential until it activates at a certain threshold value
- Since neurons aren't always active, it generally uses less power
- However, it cannot be trained as effectively using standard techniques



Results

- The dataset used for the wafer images was WM811K
- Only patterned wafers could be used for training

WM811K Data Distribution



Model Performance Comparison

Energy

15.96 Wh

1.579 Wh

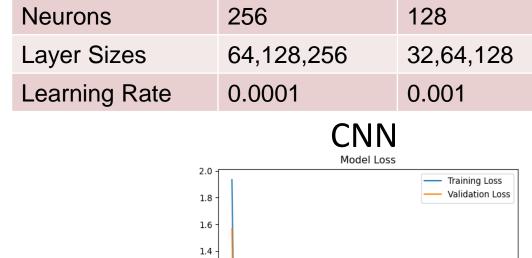
GFLOPS

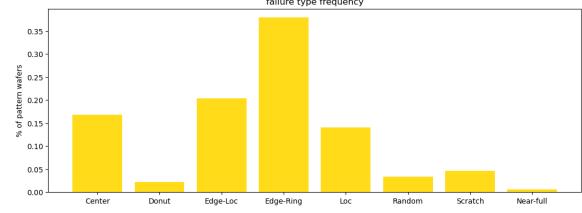
0.22

0.20

0.90

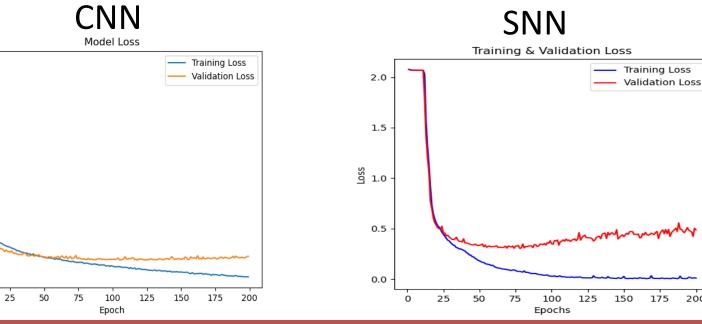
0.91





Model Hyperparameters

Hyperparameter	CNN	SNN	Hyper-	CNN	SNN
Epochs	200	200	parameter		
Batch Size	32	32	Activation Fn	ReLu	N/A
Dropout Rate	0.50	0.50	Regularizer	0.001	N/A
Dense Layers	2	2	Spike	N/A	1
Neurons	256	128	Threshold		
Layer Sizes	64,128,256	32,64,128	Decay Rate	N/A	0.9
Learning Rate	0.0001	0.001	Time Steps	N/A	5



Experimental Methods

List of Hyperparameters

- Learning Rate How much the model changes each epoch
- Epochs # of times a model is tested and adjusted (trained)
- Batch Size # of samples analyzed before weights are adjusted
- Dropout Rate Percent of inputs removed to prevent overfitting
- Activation Function (CNN) Function to add non-linearity to output 1)
- Layer Size # of filters for feature extraction
- Surrogate Gradient (SNN) Approximates spikes as differentiable functions
- Decay Rate (SNN) Rate membrane potential decays w/ time
- Regularizer Changes the model less as training progresses

- # Neurons How many neurons are in the fully connected layers
- Spike Threshold (SNN) min. membrane potential before neuron "fires"

Model Training Procedure

- .) A hyperparameter was tuned and its new value recorded
- 2) The accuracy and loss of the new model was recorded along with the effect of the hyperparameter

$$Loss = -\frac{1}{N} \sum_{i=1}^{N} y_i * \ln(\hat{y}_i)$$

 $N = \# Samples; y_i = True \ Label; \ \hat{y}_i = Probability \ of \ Prediction$

Challenges Faced

Initial installation of Python was broken, crashing runs

Inference Time

2.68 ms

717.35 ms

- SNN initially couldn't detect GPUs; instead, trained using slower CPU
- Validation loss for CNN kept increasing overtime, rather than converging to a value (Fig. 1)
 - Resolved by adding a regularizer
- SNN accuracy was held constant for many epochs (Fig. 2); model predicted everything to be one class (Fig. 3)
 - Resolved by removing the surrogate gradient

