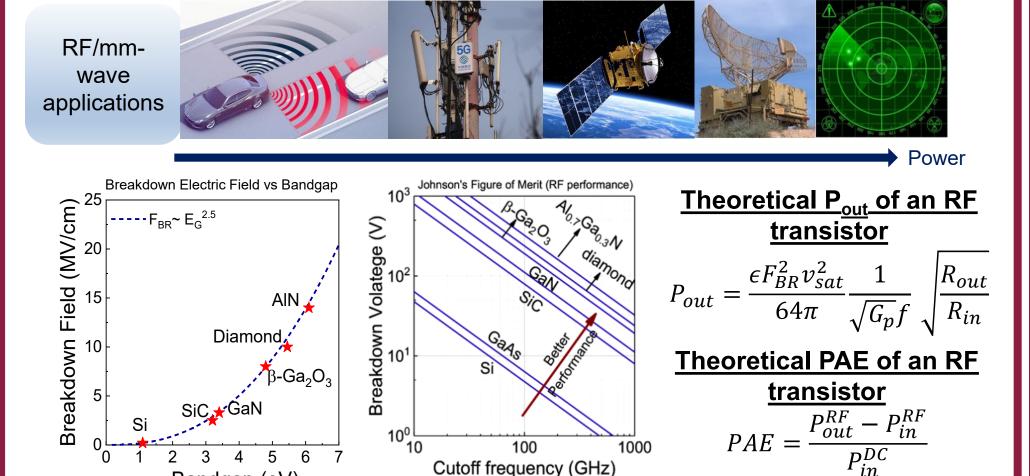
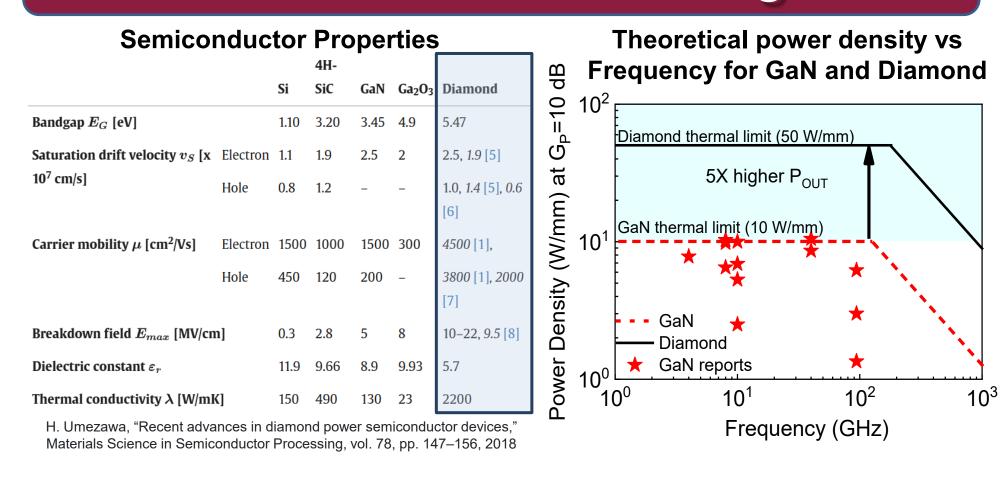


Bandgap (eV)

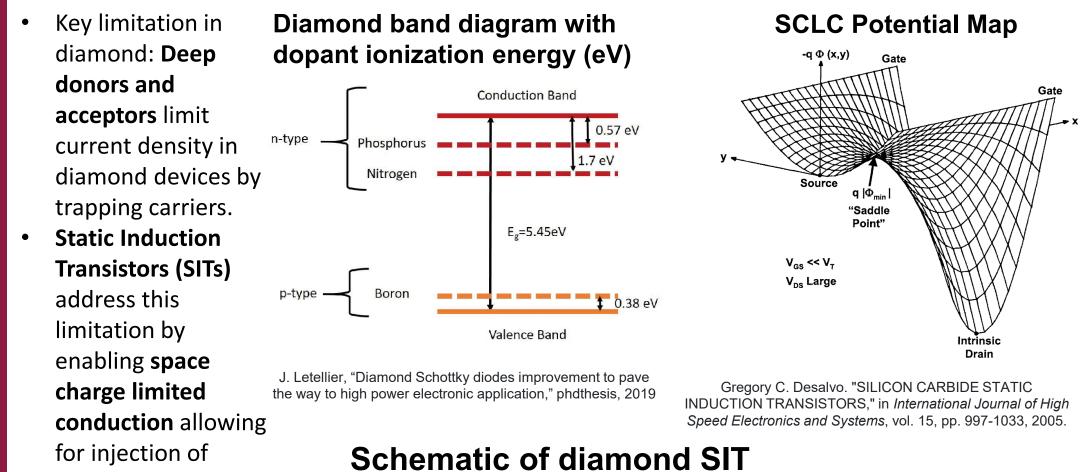
Diamond Static Induction Transistor Design and Optimization in TCAD


David M McComas, Electrical Engineering

Mentor: Dr. Nidhin Kurian Kalarickal, Assistant Professor,



Ultra-wide Bandgap (UWBG) Semiconductors for RF Devices


- UWBG semiconductors offer high breakdown fields (F_{BR}) and saturation velocity (v_{sat}).
- Johnson's figure of merit (JFOM) for RF devices, $V_{BR} imes f_T = F_{BR} imes v_{sat}/2\pi$, predicts RF performance
- Enables achieving high power density (P_{out}) , gain (G_P) and power added efficiency

The Diamond Advantage

- Diamond's semiconductor properties are ideal for high power RF devices, as indicated by JFOM.
- Power density of GaN HEMTs on SiC (state of the art RF transistor) is limited to 10 W/mm due to thermal conductivity of SiC substrate.

Diamond Static Induction Transistor

Source Electrodes from the source Boron-doped p-layer $(J_{SCLC} = \frac{9}{8} \frac{\epsilon \mu V^2}{L^3})$ **Structural Parameters** Gate Gate The diamond SIT is a • 2a: fin width

• L_g: gate length

• L_{sg}: source-gate

• L_{gd}: gate-drain

N_a: p- acceptor

Output Power, Pout

Power Added Efficiency,

Transconductance, g_m

On-resistance, R_{on}

Drain Threshold Voltage,

Breakdown Voltage, V_{br}

Cut-off Frequency, f_c

Device capacitances

length

Doping Parameter

Gain, G_n

vertical p-type normally-on FET \rightarrow a positive bias must be applied to the gate to stop current flow via draininduced barrier lowering (DIBL)

Diamond p- drift region Diamond p++ substrate Drain

concentration **Measurables of Interest:** Boron-doped drift region Current Density, J

2a & L_g: fin width & gate length

- Controls the gate's ability to pinch off the channel
- High a and low L_g yields high J, but makes it difficult to turn off (low μ)
- Low a and high L_g yields low J and it is difficult to turn on (high μ)

sg: source-gate length

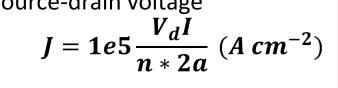
carriers directly

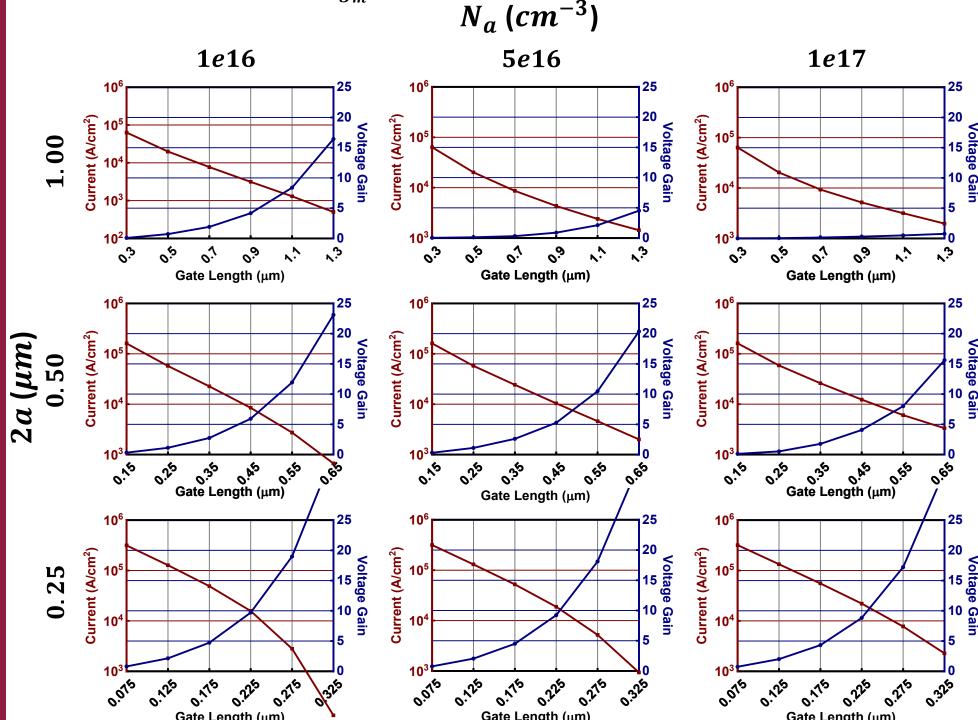
contact.

- Low leakage path with sufficient V_{BR} must exist between gate and source
- Small L_{sp} minimizes R_{source}
- μ increases as L_{sp} increases for fixed L_{p}

L_{gd}: gate-drain length

- Determined by two conflicting requirements of low R_{drain} and high V_{BR}
- Must be tailored to each doping
- μ increases and f_c decreases as L_{gd} increases


N_a: acceptor concentration


- μ decreases and J increases as N_a increases
- TCAD simulations map the parameter space to applications and reveal desirable device structures

DC Results

The voltage gain and output current are metrics of RF amplifier performance. Voltage gain is also used to calculate the output resistance. Target μ =10-15, target J=1-10 kA cm⁻²

- **Aspect Ratio, AR** = $\frac{Lg}{g}$, plotted from 0.6 to 2.6 for all devices shown
- Voltage Gain (Amplification Factor), µ: Unitless factor that describes the ratio of change in the source-drain voltage to the change in gate voltage required to cause the ΔV_d $V_{d2} - V_{d1}$ same change in output current
- r ΔV_g $^{-}$ $V_{g\,2}$ $V_{g\,1}$ **Transconductance, g**_m: The ratio of output current to the source-drain voltage
- Output Current, J (measurable)
- Output Resistance, $R_{out} = \frac{\mu}{a}$, used to calculate P_{out}

- In this project, N_a was swept from 1e15-1e18 cm⁻³ and 2a was swept from 100 nm -1.0 μm. Voltage gains and current densities from a sample of devices are shown.
- Note that the smaller devices have significantly larger J for any given μ .

Conclusion

- The device simulations show promise according to the metrics used in the study. However, it should be noted that smaller devices present a greater challenge in
- The next steps for this project is to continue sweeping N_a to lower concentrations, expand the sweep to vary L_{gd} and L_{sg} , and begin simulating RF characteristics.
- This research was made possible with the support of Intel Corporation. Thank you, Intel.

