Effect of Metallic Seed Layers on the Crystallization of NiTi Thin Films

Axel Miranda, Mechanical Engineering

Mentor: Jagannathan Rajagopalan, Mechanical and Aerospace Engineering, School for Engineering Of Matter, Transport, and Energy

Abstract

NiTi films are widely used as sensors, actuators, and switches in microelectromechanical systems (MEMS) because of their shape memory effect (SME). As-deposited NiTi films are amorphous and do not show SME. The high-temperature annealing required to crystallize NiTi films (to induce SME) leads to undesirable thermal stresses in MEMS. This project seeks to reduce the crystallization temperature (T_x) of amorphous NiTi films by incorporating carefully selected metallic seed layers. Different seed layers with low/high lattice mismatch will be explored to determine their effects on T_x. This approach, if successful, can help systematically control the T_x of NiTi films, leading to faster, energy-efficient MEMS fabrication and fewer post-fabrication failures.

Methods

Sample Preparation

- Thin films deposited using AJA Orion 5 magnetron sputtering system.
- Step 1: Deposit ~250 nm thick NiTi film (equiatomic) on Si wafers by co-sputtering from Ni and Ti targets.
- Step 2: Deposit Cr, W, Ta and Fe seed layers (20 nm) on NiTi film without breaking vacuum. Seed layers have same crystal structure as NiTi to promote crystal nucleation.
- Step 3: Cap the seed layer with an ~15 nm thick Cr layer to avoid oxidation of seed layer/NiTi film during annealing.

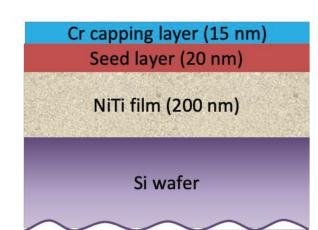
Crystallization Temperature Measurement:

- Measure electrical resistivity of NiTi films with/without seed layers as a function of temperature (RT to 500°C).
- Resistivity measured using a 4-point probe in a Ecopia Hall effect measurement system.
- Crystallization is indicated by a steep drop in resistivity.

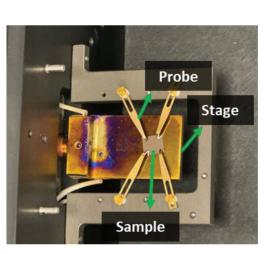
Experimental Setup and Results

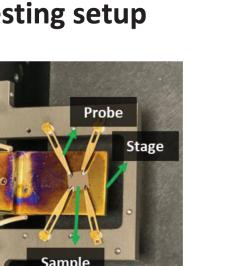
Ta seeded NiTi Film, $\epsilon_{\rm mis}$ = 9.6%

Temperature (°C)

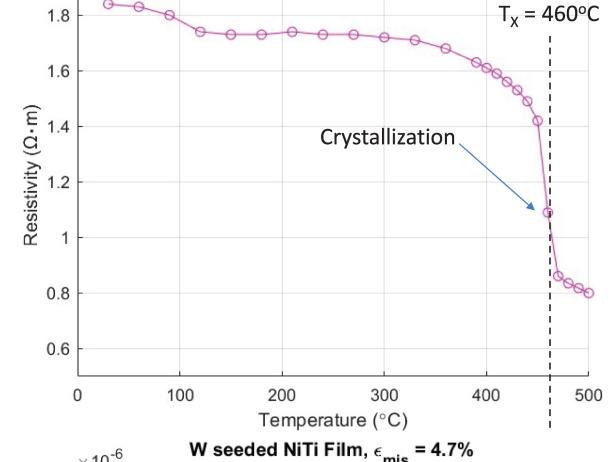

Cr seeded NiTi Film, $\epsilon_{\rm mis}$ = 3.7%

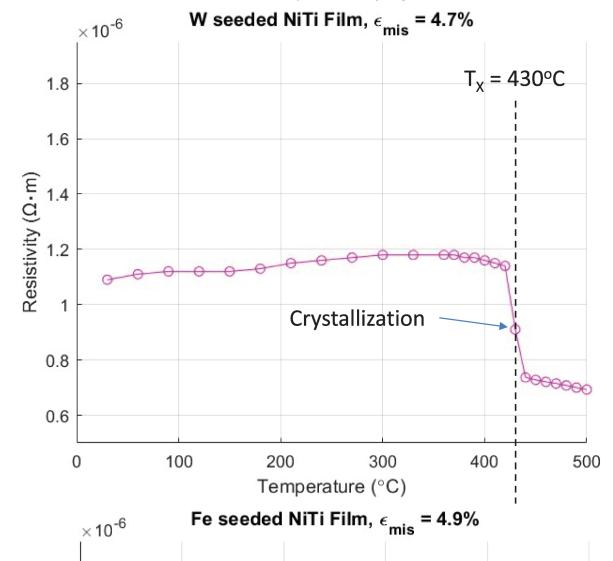
Crystallization

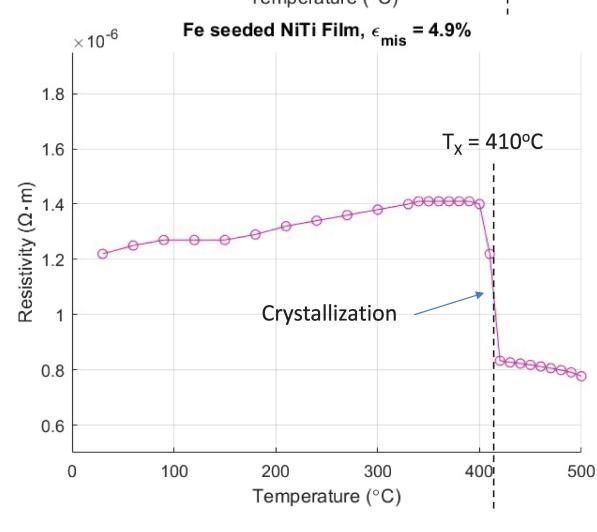

Temperature (°C)


Crystallization

Sample cross-section


Electrical resistivity testing setup





 $T_{y} = 465^{\circ}C$

 $T_{x} = 425^{\circ}C$

Conclusions

- Seed layers significantly reduce the crystallization temperature (T_x) of amorphous NiTi films.
- Reduction in T_x can be as high as 50°C for the case of Fe seed layers.
- Seed layers must be crystalline to reduce T_x of NiTi films. Ta seed layer does not cause any reduction in T_x because it is amorphous.
- For Fe seed layer, the reduction in T_x is even larger compared to Cr, which has a lower lattice mismatch strain with NiTi.
- Fe could be diffusing into NiTi (as revealed by a steady increase in resistivity before crystallization), which possibly depresses T_x more than expected.
- Crystallization proceeds rapidly once it starts, which suggests that nucleation is the rate limiting step in the crystallization process.

Future Work

- Study compositional effects of the seed layers in addition to lattice mismatch on the crystallization kinetics of amorphous NiTi films.
- Examine the phase transformation behavior of NiTi films crystallized using seed layers.
- Explore if seed layers can be used to tune the phase transformation temperatures of NiTi films for different applications.

