Augmenting Ankle Stiffness Using Cable Driven Exoskeleton to Prevent Ankle Sprain

Research Question

- Can increasing lateral ankle stiffness using a cable-driven actuators reduce the likelihood of ankle sprains in healthy adults?
- Can this method potentially benefit population affected by Chronic Ankle Instability (CAI)?

Methods

- We recruited a healthy individual with no gait impairments to perform perturbed walking while wearing our exoskeleton.
- The perturbations were provided using a robotic platform to simulate ankle sprain.
- The exoskeleton simulated three stiffness conditions: LOW, MODERATE, and HIGH.

Experiment Setup

Vedant Choudhary, MS Robotics & Autonomous Systems Mentor: Hyunglae Lee Ira A. Fulton Schools of Engineering

Fig. 1. A: Cable-driven actuator. **B:** A participant wearing the exoskeleton.

Fig. 2. A: Stepping protocol using robotic platform **B:** Representative stepping trial data showing ankle rotation w.r.t. platform at various stiffness.

Fig. 3. Averaged lateral ankle deflection at various exoskeleton stiffness conditions.

QR CODE

Acknowledgement

am grateful to Dr. Hyunglae Lee and the members of the NMCHR Lab for providing me with the mentorship and resources to accomplish this goal.

