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Methodologies

What are the potential methodologies to * GaAs PCSS device is solved self-consistently
accelerate TCAD simulation while coupling the Poisson’s equation with the

: 5 electron and hole equations.
Preserving accurdcy: * Use multi-layer perceptron model with TCAD

simulated data to predict output parameters.

 Use deep learning network as an alternative for
rapid convergency in PDE solutions.

 Describe the output characteristics of a PCSS
device based on input design parameters using
the trained DLP DNN model.

Background
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* Technology for Computer-Aided Design (TCAD) Device Definition Example QU’_ClOut and quick convergence compared to TCAD
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numerically solve for a system of partial
differential equations (PDEs).

* Multi-layer perceptron (MLP) uses hidden layers
with various activation functions to learn data.

* Photoconductive Semiconductor Switch (PCSS) is
an optoelectronic device which leverages a laser
input source over leaky metal gate electrodes [1].

e DTCO framework shown below relies on TCAD in
early process node development.

* Provide feedback efficiently for PCSS device
optimization (S, Gopt, Vd, L).
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v Figure 2: PCSS Device Structure [1] \
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4  Further train the MLP model with TCAD data

using different device structures.
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Figure 4: Training cGAN for optimized TCAD

Figure 1: General design-technology co-optimization (DTCO) flow

for new devices inputs and data augmentation.

Figure 3: Workflow to train DNN model for TCAD
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