Functionalization of Citrus Pectin as a Green Corrosion Inhibitor for Gas Pipelines

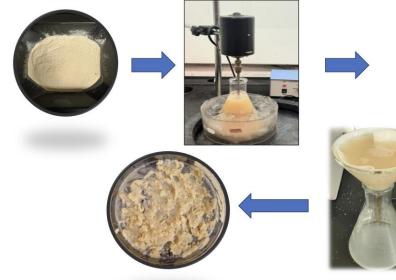
Emma Estrada, Chemical Engineering (BSE) Mentor: Dr. Shuguang Deng, Chemical Engineering(PhD) School for Engineering of Matter, Transport and Energy

Research question: To what extent is citrus pectin an effective green corrosion inhibitor for gas pipelines?

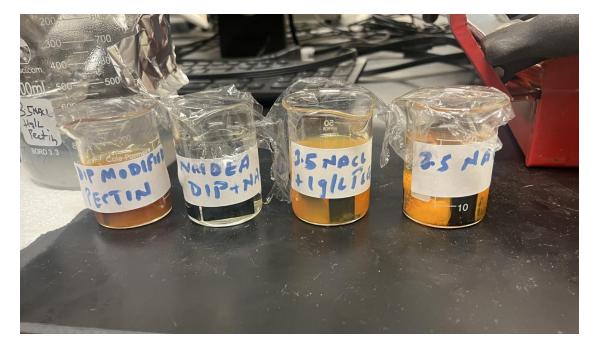
Background

- The U.S. economy incurs an annual cost of \$276 billion due to corrosion.
- Common corrosion inhibitors like N-Methyl Diethanolamine are widely used in industry and effective but not environmentally friendly.
- Citrus pectin, a renewable biopolymer, is traditionally used as a gelling agent, but now being used for broader applications.

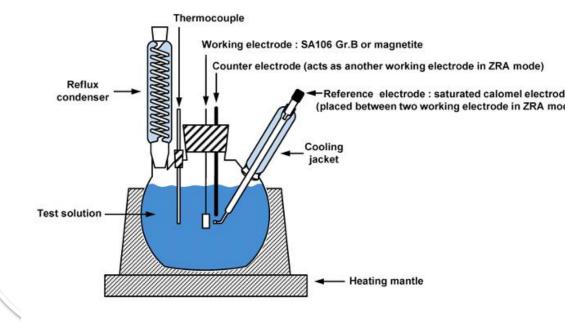
Future Work


- Optimization of citrus pectin by potentially adding polymers or additives, or testing different concentrations.
- Environmental impact testing of citrus pectin compared to standard corrosion inhibitors.
- Testing with different types of steel to observe variable effects.

Acknowledgements

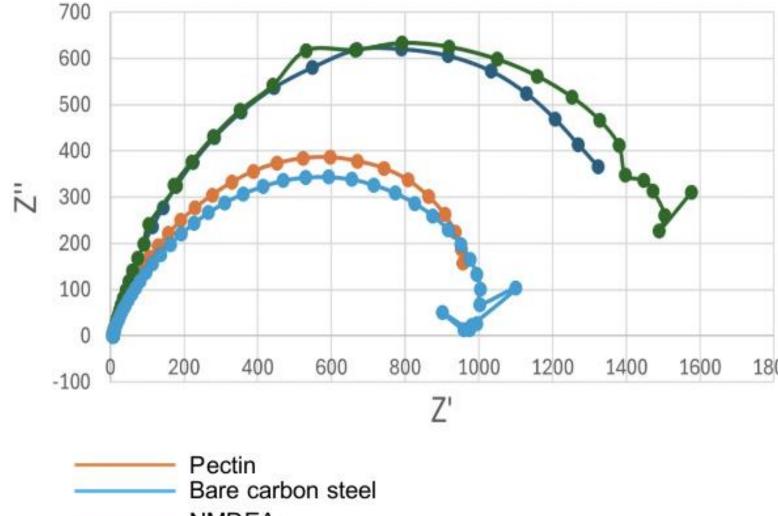

I sincerely thank my graduate mentor, Sai Niranjan, my faculty mentor, Dr. Shuguang Deng, and the Deng team for their guidance and support in this project.

Research Methods


Step 1: Modify Citrus Pec

Step 2: Analysis Using Weight

Step 3: Analysis with Electrochemistry

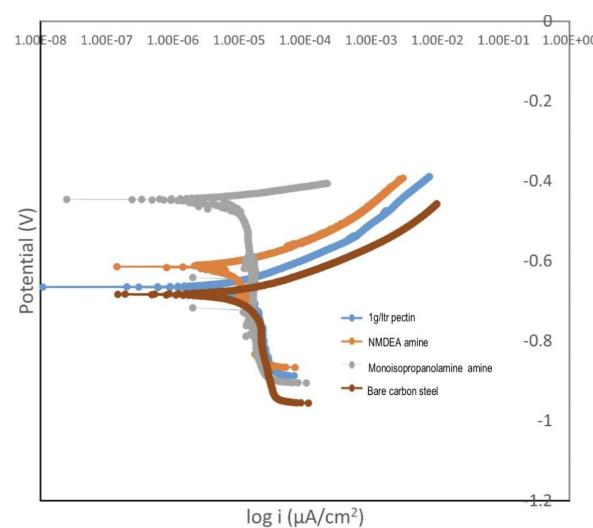


References

1.Koch, G. H., Brongers, M. P., Thompson, N. G., Virmani, Y. P. & Payer, J. H. Corrosion cost and preventive strategies in the United production – a review. Appl. Surf. Sci. Adv. 6, 100128 (2021).

thods
ctin
3 = 2 = 2
/eight

Sample	E _{corr} (mV)	Icorr (μA/cm²)	CR (mmpy)	Inhibition efficiency (%)
NMDEA	-612.88	10.372	0.1194	54.10
Monoisopropanolamine	-444.41	13.69	0.158	39.424
Pectin 1g/Ltr	-664.99	19.789	0.2300	12.4
Bare Carbon steel	-683.5	22.6	0.261	-



NMDEA Monosiopropanolamime

Before and after	Inhibtior	Average Weight(g)	Weight Loss(g)	Corrsion pecentage(%)	Inhibition effciency(%)
Before corrsion	Control Sample	3.8212	0.0091	-0.2381	
After corrsion	(Pure NaCl)	3.8121			
Before corrsion	3.5 NaCL with Pectin	3.78071	0.00882	-0.2333	3.1746
After corrsion	in Solution 1g/L	3.77189			
Before corrsion	Dipped modified	3.81407	0.00593	-0.1556	53.3708
After corrsion	pectin	3.80813			
Before corrsion	Amine Dip N Methyl-	3.7854	0.0049	-0.1294	85.7143
After corrsion	Diethanol Amine(99%	b) 3.7805			

Results

Sample	Rs (solution resistance) (Ω cm ²)	RP (Polarizatio n resistance) (Ω cm ²)	CPE (constant phase element) (F/s)	n	Inhibition efficiency (%)
EIS NMDEA	6.76	1662.3	5.5 *10-4	0.83736	37
EIS Monoisopropan olamine	6.74	1509.2	5.5 * 10 ⁻⁴	0.83553	30.61
EIS NACL 3.5 1 PECTIN	6.0	1247.4	2.32 * 10 ⁻⁴	0.76676	16
Bare carbon steel	4.964	1047	4.3 * 10 ⁻⁴	0.79745	-

Ira A. Fulton Schools of Engineering **Arizona State University**