
Educational Data Mining for Assessing Student Code Quality in Programming Courses
Devanshi Prajapati, Software Engineering

Mentor: Ruben Acuña, Assistant Teaching Professor
School of Computing and Augmented Intelligence

Research Question

Introduction

Preliminary Results

Inferences

Workflow

This research project aims to enhance automated 
assessment in programming courses by integrating 
educational data mining techniques with autograders in a 
Data Structures & Algorithms course. The study analyzes 
performance metrics and code quality indicators from 
student Java assignments in SER222 using static analysis 
tools. By examining trends in error categories, correlating 
measures with grades, and tracking code quality evolution 
over time, the project seeks to provide instructors with 
valuable insights to improve assessment and teaching of 
code quality. The work so far has focused on collecting 
assignment data, cleaning it, and creating visualizations to 
identify basic trends between error categories and 
programming assignments. This research will enable more 
effective evaluation of non-functional requirements in 
student code.

To develop a data-driven framework that analyzes student code 
submissions, and extracts insights, enabling instructors to 
effectively teach industry-standard coding practices and better 
prepare students for professional software engineering careers.

Extract errors 
from base code 
and submissions

Clean data by 
removing base 

code errors

Create 
visualizations to 
observe trends

Total errors in 
all assignments

Error-wise distribution 
of assignments 

Correlations between 
grades and errors

Understanding Good vs Bad Code

Fig. 1 Good Code

Fig. 2 Bad Code

Category Good Code (Fig. 1) Bad Code (Fig. 2)

Maintainability Modular design, easy to extend Less modular, harder to maintain

Code Complexity Uses streams for concise logic Manual loops increase complexity

Code Duplication No duplication observed Potential for duplication in loop logic

Readability Clear method names, concise code Unclear method names (sum, fact)

Whitespace Proper indentation and spacing Inconsistent spacing

Modifiers Public access modifier used No access modifiers specified

Blocks Consistent block structure Adequate block structure

Coding Uses modern Java features (streams) Uses older, more verbose coding style

Bug Detection Error handling in factorial method No input validation or error handling

Javadoc Well-documented with Javadoc Lacks documentation and comments

Naming Convention Follows standard Java conventions Poor naming (sum, fact)

The raw error counts are converted into relative percentages for each 
module. This allows comparison across modules by making each bar 
represent 100% of the total errors, with segments showing the 
proportion of each error category. 
• Naming Conventions (Red) and Readability (Purple) errors are 

consistently high, indicating students struggle with these aspects 
across all modules.

• Whitespace (Pink) and Code Complexity (Brown) errors are notable, 
suggesting issues with formatting and overly complex code.

• Javadoc (Orange) and Modifiers (Blue) errors are minimal, showing 
students generally follow documentation and access control 
practices.

• Bug Detection (Yellow) and Maintainability (Dark Blue) errors are 
low, indicating fewer bugs but room for improvement in 
maintainability.

This analysis highlights areas where students consistently struggle, such 
as Naming Conventions and Readability, allowing instructors to focus on 
improving these aspects through targeted feedback and additional 
resources. By addressing common issues like Whitespace and Code 
Complexity, instructors can refine their course content to better align 
with industry standards, ultimately enhancing student learning 
outcomes.


	Slide 1

