
Framework for Automating Hardware Verification using LLMs
Sean Lowe, Computer Systems Engineering

Mentor: Aman Arora, Assistant Professor
School of Computing and Augmented Computing

Objective & Research Question
LLMs are powerful tools for overcoming the 
difficulties of digital hardware design and 
verification. Traditionally, verification is much 
more time consuming than design - teams 
typically involve three to five verification 
engineers per design engineer. We aim to 
develop an automated framework that can 
interface with an LLM to generate testbenches 
and with a hardware simulation tool to evaluate 
the quality of the generated code. Such a 
framework can reduce barriers for verification 
engineers to use LLMs in the industry.

Methods

Our framework is Python-based. We provide 
prompts to the LLM using its API. GPU-based 
systems in the ASU’s Research Computing 
cluster are used to test this framework. 
Currently, the flow supports prompts for 
generating code in Verilog. It interfaces with a 
simulator using Makefiles to run simulations 
and then parses metrics to provide feedback to 
the LLM about the quality of the generated 
code.

Initial Results

Conclusion

LLMs can be used for accelerating the digital design 
verification process. Our framework makes it easy for 
verification engineers to unlock this potential 
without having to setup complex tools and write 
lengthy scripts. Future work involves supporting 
multiple LLMs, multiple simulation tools, and 
enabling different LLMs to work together to handle 
different parts of the verification process.

Acknowledgements

Special thanks to Dr. Nakul Gopalan collaborating on 
this research, Alma Babbitt and Elias Hilaneh for 
testing the framework, and TSMC and Intel for the 
sponsorship that makes this research possible.

Currently, the framework works with 
Llama 3.1, supports generating 
testbenches, interfaces with 
QuestaSim, and parses coverage data 
to provide feedback to the LLM. The 
table below shows line coverage 
obtained for an example design. The 
hand-coded version is obtained from 
GitHub. 

Method # Statement Coverage by Module (%)

sha1.v sha1_core.v sha1_w_me
m.v

Total

Baseline
88.88 95.13 100 95.69

Generate from 
specification 

only

1 80 74.3 100 83.51

2 80 77.08 100 84.94

3 80 86.11 100 89.6

Generate from 
specification 
and synthetic 
verification 

plan

1

88.88 86.11 100 91.03

2
93.33 90.97 100 94.26


	Slide 1

