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Research Question/Motivation
• Atomic Force Microscopy (AFM) used by researchers to 

characterize soft materials at micron and submicron length 
scales

• Experimental AFM data is easily convoluted by many 
structural effects

• Investigate/study the effects of destructive indentation and 
rigid body motion of embedded particles on AFM data

Methods
• AFM Peak Force Quantitative Nanomechanics Mapping 

(PFQNM) on multi-walled carbon nanotubes (MWCNT) and 
CNT buckypaper to obtain property data

• Finite Element Analysis (FEA)
• Simulate quasi-static AFM indentation at 

varying depths on 2D axisymmetric FE polymer-
matrix model to study the effects of 1) 
destructive indentation and 2) rigid body 
motion of particles on force-displacement data

• Models/Equations
• Derjaguin-Muller-Toporov (DMT) contact theory

 

• Microscopic yield strength based on Hertz and 
Tresca (Ikeshima et al., 2019)

Results Challenges Faced/Overcome
• Computational limitations

• Inaccurate stress solution from 
linear geometry FEA simulation 
caused by mesh distortion at 
higher indentation depths

• Lack of detail at highest 
indentation depths (4-8 nm) due to 
inadequate number of time steps 
(∆𝑡 = 0.01 s)

Future Direction
• Perform FEA for subsequent indentations 

including particles with varying contact 
conditions

• Provide AFM scientists with a  technique to 
deconvolute AFM data

• Future of AFM
• Combine AFM techniques with 

artificial intelligence to 
characterize unknown materials 
using a library of properties

• Quantify material subsurface with 
advances in AFM methods and 
computing power

• Apply new contact models to 
study/quantify hyperelastic and 
viscoelastic materials
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Figure 1 Destructive AFM indentation causing material damage (plasticity) 
to a soft polymer matrix and rigid body motion undergone by embedded 
hard particles under indentation load
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Figure 2 (a) FEA displacement contour for 0.5 nm indentation displacement control load (at time 
t = 1 s) and (b) force-displacement curves (loading and retract) for 0.5 nm, 1 nm, and 2 nm 
(linear and nonlinear geometry) indentation loads alongside the Hertzian force-displacement 
curve
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Figure 4 (a) Onset of nanoscopic yielding 
indicated by the deviation of the simulated 
force-displacement curve (linear geometry) from 
Hertzian contact theory at ~1 nm indentation 
depth and indentation force 𝐹𝑦 = 19.8 nN and 

(b) threshold for nanoscopic yielding based on 
Tresca’s yield criterion and Hertzian contact 
theory (𝑆𝑦,𝑎𝑣𝑔 = 327.25 ± 0.85 MPa) 

Figure 3 (a) FEA displacement contour for 8 nm indentation displacement control load 
(nonlinear geometry at time t = 1 s) and (b) linear and nonlinear geometry force-displacement 
curves for 4 nm and 8 nm indentation loads alongside the Hertzian force-displacement curve
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• Force-displacement data obtained for 0.5, 1, 2, 4, and 8 nm indentations, plotted alongside Hertzian curve
• Identified micro(nano)scopic yield threshold, 𝑆𝑦,𝑎𝑣𝑔 = 327.25 ± 0.85 MPa

• Simulated force-displacement data for linear and nonlinear geometry analyses deviate as indentation depth increases
• Higher indentation forces for nonlinear geometry
• FE model poorly described by Hertz and DMT at high indentation depth (small strain/small deformation assumption no 

longer applies)
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