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Background

Analyzing T cell receptor (TCR)-epitope
interactions is vital for identifying therapeutic
targets, while TCR clustering reveals clonal
expansion patterns, aiding intervention.
Predicting TCR-epitope binding affinity helps
screen TCRs against harmful antigens. Recent
advances, like catELMo, enhance TCR tasks,
yet its mechanisms are unclear. 

This research is a large-scale study on TCR embeddings, focusing on optimizing
catELMo parameters (e.g., learning rate, batch size, epochs). Despite transformer
models, bidirectional Long Short-Term Memory (biLSTM)-based embeddings excel in
prediction tasks. To grasp catELMo's success, a comparative study on TCR
embeddings is proposed, focusing on optimizing baseline model parameters due to
the study's scale.
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• The crucial role of the T cell receptors (TCRs) in the adaptive immune system lies in 
their ability to facilitate killer T cells in distinguishing between abnormal cells and 
normal cells.

• Using computational methods to predict their binding can significantly decrease 
both the cost and time required to refine a set of potential TCR targets, thereby 
expediting the advancement of personalized immunotherapy.

• While Transformer models, like TCRBert, have gained traction in Natural Language 
Processing, recent research highlights catELMo’s superior accuracy in predicting 
TCR-epitope binding.

• Baseline model parameters were selected with Learning rate, Batch Size, 
Embedding Size, LSTM Layers and LSTM Dimensions.

• It has been trained on 4,173,895 TCRβ CDR3 sequences (52 million of amino 
acid tokens) from ImmunoSEQ.

• Then from trained models , TCR-Epitope embeddings were extracted.
• We investigated and recorded the downstream performance of TCR-epitope 

binding affinity prediction models trained using these catELMo embeddings.

• catELMo continues to outperform transformer models with further parameter 
tuning.

• Increasing the embedding size (1024, 2048) for the catELMo model improves 
performance.

• The batch size of 256 outperforms lower batch and higher batch sizes for the 
Epitope split.

• A learning rate close to 0.1 will have much better results compared to smaller 
or larger learning rates.
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• We look forward to further exploring other hyperparameters and how they 
affect the performance of the model.

• Further exploration of the model will also shed light on how the catELMo 
model performs much better than transformer models.
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