Advancing Drug Delivery Systems: Building a Model for Thin Film Double-Layer Polyurethanes

Research Question

Can the shape/release exponent (n) be controlled in a double-layer film system for drug delivery applications by varying two different material properties: diffusion coefficients and film depths?

Background

What is n? Release exponent associated with the drug release shape

$n \rightarrow 0$	drug release is more exponential
n → 0.53	standard diffusion
$n \rightarrow 1$	drug release is more linear and constar

Korsmeyer-Peppas Model ¹:

2. Set up a DOE with multiple combinations of diffusion coefficients, thicknesses, and layer location (16 total).

3. Use Fick's 2nd Law again, but with changed boundary conditions and parameter patterns for double-layer-films

4. Analyze data on JMP Pro[®] 16

5. Vary ranges of thicknesses and diffusion coefficients, while fixing the other variables at their high or low extreme.

1. Use diffusion coefficients of polymers from experimental data of single-layer-films².

> i. Governing principle: Fick's 2nd Law with single layer boundary conditions

ii. Use the Partial Differential Equation (PDE) and Least Squares Method (LSM) via MATLAB.

Tina Ton, Biomedical Engineering Mentor: Dr. Brent Vernon, Ph.D School of Biological Health and System Engineering

Fick's Second Law of Diffusion (planar) ³:

- Plot from prediction expressions in JMP for n

n	D1 (µm²/hr)	D2 (µm²/hr)	T1 (μm)	T2 (μm)
High Extreme	105	4.25	0.25	0.5
Low Extreme	4.25	105	0.5	0.25

exponents.

References polymers," *Int. J. Pharm.*, vol. 15, no. 1, pp. 25-35, 1983. [Online]. Available: https://doi.org/10.1016/0378-5173(83)90064-9 [2] Gerdes, M.; Vernon, B.; Pal, A. tech. [3] Ueber Diffusion - Fick - 1855 - Annalen Der Physik - Wiley Online Library. https://onlinelibrary.wiley.com/doi/10.1002/andp.18551700105. Accessed 2 Apr. 2024.

Conclusion

Varying both diffusion coefficients and the thicknesses of the inner and outer layers can affect the diffusional release

Future Work

Honors Thesis: Comparing experimental releases from double-layer films with MATLAB's theoretical release.

[1] R. W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, and N. A. Peppas, "Mechanisms of solute release from porous hydrophilic

Acknowledgments

Thank you to Dr. Brent Vernon for giving me the opportunity to be part of the lab since Spring 2022. I have learned an invaluable amount about drug delivery since then and I am grateful for all the support.

