Objective and Research question:
This project explores the viability of Direct Ink Writing (DIW) 3D printing to manufacture robots with hydrogels and controlling these robots with magnets.

Background:
- 3D printing is a powerful manufacturing tool that allows for flexible part design and very little waste material.
- The Chen Research Group, the developers of the hydrogel-based resin, used Micro continuous liquid interface production (μCLIP) to produce parts with the hydrogel.
- However, μCLIP printing is expensive and requires a lot of equipment.
- The purpose of this project is to develop a new way to print these parts using DIW, a far cheaper and easier printing option.

Methods, Instruments, Materials
- Photopolymerizable hydrogel resin:
 - Supplementary Information, Section 2
- 3D Printer:
 - Hyrel 3D Engine HR
- Methods:
 - Load the syringe with the resin
 - Customize g-code to level the Z-axis and perform the correct UV pen operation
 - Load glass slides on the build plate

Problems
- Viscosity and homogeneity vary with time
- Resin cures and solidifies at the needle tip
- Each needle tip requires specific flow rate
- Low viscosity make overhangs challenging
- Resin leaks out of the syringe

Solutions/Future work
- Print right after creating the resin
- Tweak flow rate, layer height, and UV pen intensity
- Formulate an equation that relates needle size, flow rate, and age of the resin
- Tweak retraction distance in the g-code
- Conclusion: Need more time to determine DIW's viability

Literature Cited