Developing an antibody language model for generating missing amino acid residues to complete partial BCR sequences
Sonal Sujit Prabhu, MS Computer Science
Mentor: Dr. Heewook Lee, Assistant Professor, SCAI
Ira A. Fulton School of Engineering

Background:
• Antibodies (BCR) contain heavy and light chains. Located at the ends are the heavy chain variable region (VH) and the light chain variable region (VL), which paired together form the antigen binding site.
• Immune receptors from tumor-infiltrating T and B cells hold therapeutic potential.
• Profiling immune receptors via targeted immune repertoire sequencing (TCRs and BCRs) is costly and consumes tissue samples; RNA-seq is also used but may yield partial receptor sequences due to sequencing coverage fluctuations.

Data Filtering and Distribution:
• We extract the unpaired heavy and light chain sequences data from Observed Antibody Space database.
• The following filtering steps are undertaken:
 1. We use only human samples for extracting the sequences
 2. Exclude Naïve B cell samples for now
 3. Downsample large repertoire sequences

Model Framework:
• The idea is taken from AlphaFold’s [1] EvoFormer embedding architecture, which utilizes an multiple sequence alignment (MSA) of related protein sequences.
• We treat BCRs as related protein sequences as B cells undergo clonal expansion, somatic hypermutation and selection to generate a population of related BCRs (antibodies).
• We use a transformer like model that learns contextual patterns within each sequence as well as across related sequences in MSA.
• We use standard attention layer [2] across each sequence in MSA and also use an axial attention [3] to capture the contextual pattern across each BCR and but also capture relatedness across similar BCRs.
• We add a decoder block for the model to learn how to predict the amino acid token from embeddings learned by the model.

Future Work:
• The training of the above model is still under progress. We aim to bring down the loss of the model and allow for better prediction of the masked sequences.

References:

Acknowledgements:
I would like to thank Pengfei Zhang (PhD Student, SCAI) for mentoring me throughout the project.