Optimizing Compact Model of Nanosheet FET (NSFET) for Analog/Digital IC Design

Po-Heng(Peter) Ho, Electrical Engineering

Mentor: Dr. Kexin Li
Arizona State University, Tempe, AZ

Acknowledgements
Special thanks to my mentor Dr. Kexin Li and Ruilin Wang for helping me get these data through their mentorship!

Reference

Background
Compact Model is a bridge between IC design and semiconductor devices, which enables us to design and simulate circuit implementation to achieve desired functionality.

Scaling to achieve faster, more energy-efficient devices as shown in Figure 1[1].

The Nanosheet FET (NSFET) demonstrates superior performance, emerging as a leading option for 3 nm technology and beyond.

Limited by reliability issues like transconductance degradation, parasitic from channel height and geometry of nanosheets, thermal effects.

Goal
Developing a Compact model to accurately simulate the NSFET with desirable performance.

Process & Methods
• Extracting devices character with the MIT Virtual Source (MVS) model
 o Physical based model with Charge sheet approximation as fig.2[2].
 o Accurate short-channel phenomena such as DIBL, velocity saturation, etc.
 o Easily extracted with only 10 parameters needed.
 o Simplification through the virtual source concept for carrier injection modeling.

Future works
1. Refine the MVS model for NSFET.
2. Continue research and study on Solid State Device Physics.
3. Integrate for system-level simulation...

Circuit level simulation

Driving question
A modern VLSI circuit contains more than a billion transistors in a single IC.

How can we accurately capture the behavior of nanoscale devices for advanced circuit and system design?