
Asynchronous Concurrency in Anonymous Dynamic Networks
Peter Vargas, Computer Science

Mentor: Andréa Richa, President’s Professor
School of Computing and Augmented Intelligence

Introduction & Motivations
Drawing inspiration from the remarkable collective behaviors observed in
biological and social systems, our research endeavor revolves around the
intricate interplay of weak computational entities operating within dynamic
networks.

Specifically, our focus centers on distributed algorithms tailored for
dynamic networks characterized by nodes devoid of unique identifiers
(anonymous), equipped with sub-logarithmic memory (incapable of
computing identifiers), and relying on message-passing between
neighboring nodes as the means of communication.

Problem Description
Environment: A time-varying graph that consists of nodes and edges.
Nodes can be thought of as the entities that we want to synchronize.
Edges are the connections between nodes, and it is the channel they use
to communicate with each other.

Synchronizer: Node must have message from all neighbors to move
forward. If an edge leaves the network, then clear all messages in the
buffer associated to the edge leaving. If an edge joins, nodes send a
message when activated to tell the new neighbor of their phase number,
the higher of the two will be forced to wait until the lower catches up.

Objective: Show that with our synchronizer applied to the asynchronous
environment, there is an equivalent synchronous execution (in terms of
network topology and color of nodes).

Synchronous (top) and Asynchronous (bottom) Executions Results
The time varying graphs on the left assist our claim that with our
synchronizer applied to an asynchronous environment there will be an
equivalent execution in a synchronous environment.

Ongoing Work & References
- We will continue to work on this to formally prove correctness and
bound the overheads of our synchronizer, as well as expanding upon our
simulator with an implementation of our synchronizer to see more results.
- Special thank you to Dr. Richa and PhD student Anya Chaturvedi for their
endless help and support throughout this project.

References:
[1] Baruch Awerbuch, Boaz Patt-Shamir, David Peleg, and Michael Saks. 1992. Adapting to asynchronous dynamic
networks (extended abstract). In Proceedings of the twenty-fourth annual ACM symposium on Theory of
Computing (STOC '92). Association for Computing Machinery, New York, NY, USA, 557–570.
https://doi.org/10.1145/129712.129767
[2] B. Awerbuch and M. Sipser, "Dynamic networks are as fast as static networks," [Proceedings 1988] 29th Annual
Symposium on Foundations of Computer Science, White Plains, NY, USA, 1988, pp. 206-219, doi:
10.1109/SFCS.1988.21938.
[3] L. Shabtay and A. Segall, "A synchronizer with low memory overhead," 14th International Conference on
Distributed Computing Systems, Poznan, Poland, 1994, pp. 250-257, doi: 10.1109/ICDCS.1994.302420.
[4] Baruch Awerbuch. 1985. Complexity of network synchronization. J. ACM 32, 4 (Oct. 1985), 804–823.
https://doi.org/10.1145/4221.4227

*** The graph, from Fig. 8 to Fig. 9 can be read as follows:
Nodes A, B, C are activated (denoted by double circles), and
only nodes B and C have Phase 0 messages incoming from all
edge buffers, thus nodes B and C will both consume the
current messages in their edge buffers, increment their phase
number, recalculate their color, then send a message along
their synchronized neighborhood letting those neighbors
know of their new current phase number.

*** New incoming edges are shown as red.

Synchronizer Setting Anonymous Local/
Global

Assumptions

Alpha (⍺) [1,4] Static No Local Failure free, no node
shared memory

Beta (β) [4] Static No Global Failure free, no node
shared memory

Gamma (Ɣ)
[2,4]

Static No Semi Failure free, no node
shared memory

Sigma (σ) [3] Static No Global Complete network,
unbounded memory,
knows ID of all nodes

Zeta (ζ) [2] Dynamic No Semi Failure free, knows ID
of nodes in its cluster

Ours Dynamic Yes Local Knows the status of
all its edge ports

Comparison of our synchronizer to other work

Algorithm: If there are 2 or more connected
edges to a node, it will determine its color to be
yellow. If there are less than 2 edges to a node, it
will determine its color to be white.

A beautiful real-world example of synchronization within asynchronous
networks can be illustrated through the mesmerizing dance of fireflies.

