Maximize Solar Power Using Reconfiguration Circuits

Patrick M. Shea Jr., Electrical Engineering Mentor: Dr. Jennifer Kitchen, Associate Professor School of Electrical, Computer and Energy Engineering

Research Focus

- Optimize and measure the reconfiguration methods of a solar array using a Total-Cross Tie (TCT) structure
- Observe the effect of shading on asymmetric and symmetric solar array structures
- Review data, document meaningful results, and publish in a scholarly paper.
- Define an algorithm that scales and minimizes the switches needed to reconfigure a TCT array

Power Improvement

Spacecraft BOL vs EOL

- Can terrestrial solar power be more efficiently extracted with innovation in reconfigurable hardware and algorithms?
- Preliminary research in spacecraft solar systems (where array performance can degrade from 20% to 50% over a 15 -year mission) shows promise in significantly increasing available power using array reconfiguration.
- This research explores using innovative hardware, including low-loss electronic power switches, to bypass or reconfigure solar cells affected by shading.
- This approach may potentially improve output solar efficiency by up to 30% over the system's lifetime

Shading Patterns

Horizontal
Diagonal

Vertical

Modeling the Algorithm

Each PV has 4 switching devices.

Stacking in an array gives:

$4 m n$

- A cross-tie is needed between rows and columns:
$(m-1)+(n-1)$
- At the module termination some switches are not needed: (-2m-2n)

Two control switches are needed at ground and Vout.

Simplifying too:
$S_{m, n}=4 m n-m-n$

