Unified Frenet Frame Motion Planning Based Framework for Social Navigation

Karthick Subramanian, Robotics and Autonomous Systems (Mechanical Engineering)

Mentor: Dr. Wenlong Zhang PhD, Associate Professor

Ira A. Fulton School of Engineering, Arizona State University

RESEARCH QUESTION

In a fast paced and complex scenario such as self driving, what is a computational framework that enables autonomous vehicles(AVs) to interact safely and naturally with human-driven vehicles?

MOTIVATION

Figure 1: Example of incorrect behavior prediction

Figure 2: Real interaction scenario

- AVs are a high speed, safety critical application and existing behavior prediction algorithms are computationally expensive based on the planning horizon
- As the dimensionality of the space grows, the computation becomes higher
- Since safety is critical, a simplified planner is not sufficient for deployment in real interaction

APPROACH

Integrate a Stackelberg game-based Sarsa(λ) tree search with predictive motion planning in Frenet frame, activated based on time-to-collision(TTC) for AV-human interaction with real data validation.

AV and other vehicle states

Figure 5: Architecture of Frenet frame based motion planning for platform agnostic social navigation

RESULTS

- Frenet frame based motion planning yields better results in terms of MAE and MSE for velocity compared to baseline.
- Without the decision making module, the interaction leads to a collision.

Metric (in m/s)	Exhaustive Search Motion Planner	Frenet Frame Motion Planner	Ego agent global path Other agent global path Ego agent Frenet path ▼ Ego agent Other agent Frenet path Other agent
MAE	1.0234	0.5857	
MSE	1.7865	0.6656	

Table 1: MAE and MSE of velocities from baseline[2] and Frenet Frame

Figure 6: Ego and other agent colliding with only the motion planner

FUTURE WORK

- Integrate the intent inference and decision making block with the frenet frame motion planner, similar to [1]
- Validate the architecture with real data

ACKNOWLEDGEMENTS & REFERENCES

I'd like to thank my mentor, Sunny Amatya, and Dr. Wenlong Zhang for their support throughout the duration of the project.

[1] C. Li, T. Trinh, L. Wang, C. Liu, M. Tomizuka and W. Zhan, "Efficient Game-Theoretic Planning With Prediction Heuristic for Socially-Compliant Autonomous Driving," in IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10248-10255, Oct. 2022, doi: 10.1109/LRA.2022.3191241

[2] Peng, B.; Yu, D.; Zhou, H.; Xiao, X.; Xie, C. A Motion Planning Method for Automated Vehicles in Dynamic Traffic Scenarios. Symmetry 2022, 14, 208.

