Background and Motivation

- Synechococcus sp. PCC 11901 is an attractive host for the metabolic engineering and synthesis of D-lactate due to natural transformability, short doubling time, and the ability to thrive with high light intensities and a wide range of salinities.
- Deletion of the recJ gene has been studied to increase the transformability of Synechocystis sp. PCC 6803 two-fold.
- It is hypothesized that recJ deletion in PCC 11901 will accelerate its engineering for increased D-lactate synthesis.

Methodology

Two recJ genes present within the genome

- Case 1 deletion:
 - recJ
 - 2001 nt
- Case 2 deletion:
 - recJ
 - 2,286 nt
- Homologous recombination replaces recJ genes with streptomycin resistance (SmR) and CRISPR (Cpf1) genes, for both cases.

Results

- Initial designed method was unsuccessful

New Method

- Sequencing results came back positive for the desired plasmid design

Future Work

- Transform the recJ deletion plasmids into PCC 11901 and confirm genetic segregation
- Construct and transform a second set of plasmids for the purpose of D-lactate production
- Compare the D-lactate production in recJ deleted strains vs strains with no recJ deletion using HPLC
- Our PCC 11901 sample is currently contaminated with PCC 7002, replating and DNA analysis is currently ongoing for strain isolation

Acknowledgements

Thank you to Nandini Kannouji, Jackson Comes, Nima Hajinajaf, and Sumant Brahankar for supporting me as I navigate these new topics. Thank you to Dr. Varman for the opportunity to participate in such interesting research.