Patient-Adaptive Robotic Balance Training for Lower- Extremity Stroke Rehabilitation

Ellory Oleen, Biomedical Engineering
Mentor: Dr. Hyunglae Lee, Associate Professor
School for Engineering of Matter, Transport and Energy

INTRODUCTION

Stroke
- Motor impairments cause balance difficulty
- Hinders independence & quality of life

Hypothesis: Perturbation-based robotic training on compliant surfaces will lead to improvements in functional & dynamic postural balance for chronic stroke patients.

EXPERIMENTAL SETUP

2 stroke patients (age: 63, 61 yrs) balanced on a twin dual-axis robotic platform using visual feedback of center of pressure (COP) & weight distribution.

6-week study:
- 12 sessions total + 3-Mo Follow Up
- Clinical assessments (functional balance)
- Training sessions (dynamic balance)

Left COP Weight Dist. Right COP

TRAINING SESSIONS

Perturbations
- Platforms perturbed after balance was obtained
- Dynamic balance assessed by Time to Perturb (TTP) & Time to Stabilize (TTS)

Performance-Adaptive Stiffness

Platform stiffness (PS) depended on percent success (%S) in previous block

Linear relationship:

\[PS_{\text{new}} = -12 \cdot \%S_{\text{current}} + PS_{\text{max}} \]

- \(PS_{\text{max}} \): maximum PS (1500 Nm/rad)
- \(\%S_{\text{current}} \): % of most recent block
- \(PS_{\text{new}} \): temporary PS value

Adaptive bisection method:

\[PS_{\text{next}} = \left(1 - 0.5^w \right) \cdot PS_{\text{current}} + 0.5^w \cdot PS_{\text{next}} \]

- \(PS_{\text{current}} \): PS of most recent block
- \(w \): # consecutive prior blocks
- \(w \) with ↑ or ↓ %S
- \(PS_{\text{next}} \): PS for next block

RESULTS

- Performance: BBS, MBT, 10MWT
- PS, TTP, TTS

- Clinical Assessments:
 - Both improved BBS, MBT, 5XSTS, & 10MWT-F
 - Subj. 1 improved 10MWT-S

- Training Sessions:
 - Both improved TTP, TTS, & PS

- 3-Month Follow Up:
 - Subj. 1 retained improvements in BBS, MBT, 10MWT-S, & 5XSTS

CONCLUSIONS

- Perturbation-based robotic training on compliant surfaces yielded improvements in functional & dynamic balance for chronic stroke patients.
- Increased ability to stabilize in challenging environments (TTP)
- Increased ability to recovery quickly from external perturbations (TTS)

Future Directions:
- ↑ sample size
- Non-uniform perturbations