Introduction

Mixed Matrix Membranes (MMMs)
- Combination of Continuous Organic Polymer Phase and Porous Additive
 - Utilizes the ease of processing polymers
 - Benefits from improved gas separation performance of diverse porous filler materials
- Potential for Enhanced Separation Quality:
 - Higher gas permeance may be observed with increased loading of the porous filler. (Nuhnen, 2021)
- Components:
 - Polymer Phase: Pebax 1657
 - Filler: ACOF-1; Covalent Organic Framework (COF)

MMMs Synthesis

- Pebax 1657/ACOF-1 + EtOH/H2O
- Casting solution stirring and sonication
- Mixture casting in a petri dish
- Solvent evaporation in an oven

Gas Permeance Setup; CO₂ Permeation (ppm)
- In testing the permeance and performance of the synthesized MMMs, we employed an in-house-built permeation setup

Conclusion; CO₂ Permeation (Barrer Units)
- MMMs have the potential for increasing the CO₂ permeance as compared to typical polymers:
 - Significant increase with higher ACOF-1 loading
- The in-house built gas permeance cell and the MMMs show reliable data.
 - Sensible CO₂ parts per million (PPM) data
 - Absence of erratic peaks

Future Work
- Test for Selectivity:
 - Experiment with gas mixtures such as CO₂/CH₄ to assess the selectivity of the material towards specific gases
 - Increase ACOF-1 Loading to assess the impact on permeance and selectivity
 - Experiments to test if the sonication impacted the chemical composition of the casting solution.

Mentor: Dr. Kailong Jin, Asst Professor, SEMTE
Ira A. Fulton Schools of Engineering

GAS PERMEATION STUDIES OF THE COVALENT ORGANIC FRAMEWORKS (COFs) BASED MIXED MATRIX MEMBRANES (MMMs)

Dhruv Tomar, Chemical Engineering

Proposed Gas Permeance Setup For Testing Selectivity

Proposed Gas Permeance Setup For Testing Selectivity

- In testing the permeance and performance of the synthesized MMMs, we employed an in-house-built permeation setup

(Images and diagrams not provided in the text representation.)