Investigating Barrier Properties of Laminate Packaging Materials for Flexible Batteries
Benito Rincon Ramirez, Mechanical Engineering
Mentor: Candace K. Chan
School for Engineering of Matter, Transport, and Energy, Arizona State University

Introduction
Flexible batteries are used in wearables such as health monitoring devices, skin sensors, and flexible electronics. These batteries are made with sealed flexible packaging material which undergo constant bending.

Research Questions
What is the effect of grain orientation of the seal strength?
What is the effect of the adhesive, tab, electrolyte exposure, relative humidity (RH) and temperature on the seal strength?
How does the seal strength change after bending?

Analyzed Material
Name: A
Thickness: 0.148 mm

Name: B
Thickness: 0.087 mm

Methods
1. Cut the samples into the desired dimensions

 Sheet Grain Direction
 - Horizontal
 - Vertical

 Sheet Grain Seal Orientation:
 - HH: Both horizontal
 - VV: Both vertical
 - VH: 1 vertical & 1 horizontal

2. Prepared two adhesive tapes and the tab

 Aluminum Tabs
 Adhesive

 Adhesives were added between the sealing area to secure the tab used for electrical connections to the battery electrodes.

3. Sealed samples

4. Bending, electrolyte addition, RH or temperature change

 Temperature
 RH Percentage
 Bending Angle
 65 °C
 65 %
 60° at 3k Cycles

5. Tensile tester

 Sealing Area:
 Sample dimensions: 3 cm x 4 cm
 Bending Axis
 Cross-section view

Results
Figure 1 & 2: Average max force of different orientations are shown for materials A and B with comparison of RH and temperature effect. Material B also shows as is (no condition).

Figure 3: Average Max force of different conditions are displayed for RH with comparison of materials A and B.

Figure 4: Average Max force of different conditions is displayed for electrolyte addition with comparison of materials A and B.

Conclusion
For material A, with RH, all orientations’ seal strength had minimal change with all close to 75 N. Temperature testing (VV & VH) had similar force while HH had the lowest strength. In material B HH did the best overall but showed that temperature reduced the seal strength the most. With RH, material B had better seal strength except on bending. Adding adhesive + tab showed to decrease the seal strength for both materials. In electrolyte addition material B had higher seal strength and temperature showed lowered strength compared to RH effect.

Acknowledgements
Candace K. Chan Research Group, School for Engineering of Matter, Transport, and Energy, Arizona State University. This research was supported in part by Fulton Undergraduate Research Initiative (FURI).