Data Collection for Fine-Tuning LLMs for Hardware Verification Researcher: Alma Babbitt, Computer System Engineering

Objective

The chip design industry uses hardware description languages such 2. as Verilog for designing and testing integrated circuits. Verifying a circuit design is complex and resource-intensive. This study aims to 3. collect a dataset that can be used for fine-tuning LLMs (Large Language Models) for generating verification code for circuit designs written in Verilog.

Method

Fine-tuning LLMs necessitates labeled data. GitHub's public repositories were scraped, and a combination of Python scripts and manual collection methods were employed to gather and filter the data. This collected data can then be used to fine-tune ChatGPT.

Mentor: Nakul Gopalan (Assistant Professor) **School of Computing and Augmented Intelligence**

Challenges

- Non-uniformity of structure of specification documents
- Limited Verilog repositories to scrape
- Parsing code and matching with specification description is nontrivial

Progress

- GitHub identified as the best source for scraping open-source repositories.
- GitHub API calls used to download hundreds of repositories if Verilog files are found in the repository.
- Scripting was used to keep repositories with design, specification, and corresponding verification files for modules and submodules.
 - (License information kept as well). These files are identified by file location, name, and extension.
 - Manual collection used in place of scripting to further parse and collect self-contained data points. This was done to better understand how scripts can automate this process.
 - 50 hand curated data points have been collected so far.

•

 \bullet

We have created a dashboard for the dataset and are working on curating it with more metadata, as well as adding more data points.

They were fed into ChatGPT to fine-tune the model to verify the dataset collected so far. Improvement in code generated was observed.

Dataset creation is key to fine-tune or train LLMs to generate verification code. We have taken a step in that direction. Future work involves filtering and scraping more open-source repositories for thousands of data points. Further scripting will be used to precisely separate the repositories in digestible chunks for ChatGPT. An LLM will be fine-tuned with this dataset using 100% code coverage as the goal.

research!

Fig. 2 Data Hierarchy for Each Entry in the Dataset

of Collected Data				
A A		В	С	D
1 ID		design	spec	verif
2	0	trng0\design	trng0\spec	trng0\verif
3	1	trng1\design	trng1\spec	trng1\verif
4	2	trng2\design	trng2\spec	trng3\verif
5	3	trng3\design	trng3\spec	trng3\verif
6	4	verilog-divider\design	verilog-divider\spec	verilog-divider/verif
7	5	ethmac0\design	ethmac0\spec	ethmac0\verif
8	6	ethmac1\design	ethmac1\spec	ethmac1\verif
9	7	i2c\design	i2c\spec	i2c\verif
10	8	chacha0\design	chacha0\spec	chacha0\verif
11	9	chacha1\design	chacha1\spec	chacha1\verif
12	10	chacha2\design	chacha2\spec	chacha2\verif
13	11	cryptech_uart\design	cryptech_uart\spec	cryptech uart\verif
14	12	microprocessor\desig	microprocessor\spec	microprocessor\verif
15	13	mkmif0\design	mkmif0\spec	mkmif0\verif
16	14	mkmif1\design	mkmif1\spec	mkmif1\verif
17	15	mkmif2\design	mkmif2\spec	mkmif2\verif
18	16	<u>sha10\design</u>	<u>sha10\spec</u>	sha10\verif
19	17	<u>sha11\design</u>	<u>sha11\spec</u>	sha11\verif
20	18	sha12\design	sha12\spec	sha12\verif
21	19	vndecorrelator\design	vndecorrelator\spec	vndecorrelator\verif
22	20	cryptech uart\design	cryptech uart\spec	cryptech uart\verif
23	21	fifo\design	fifo\spec	fifo\verif

Fig. 3 Snapshot of Dashboard

Conclusion

Acknowledgements

Special thanks to **Prof. Aman Arora** for collaborating on this

