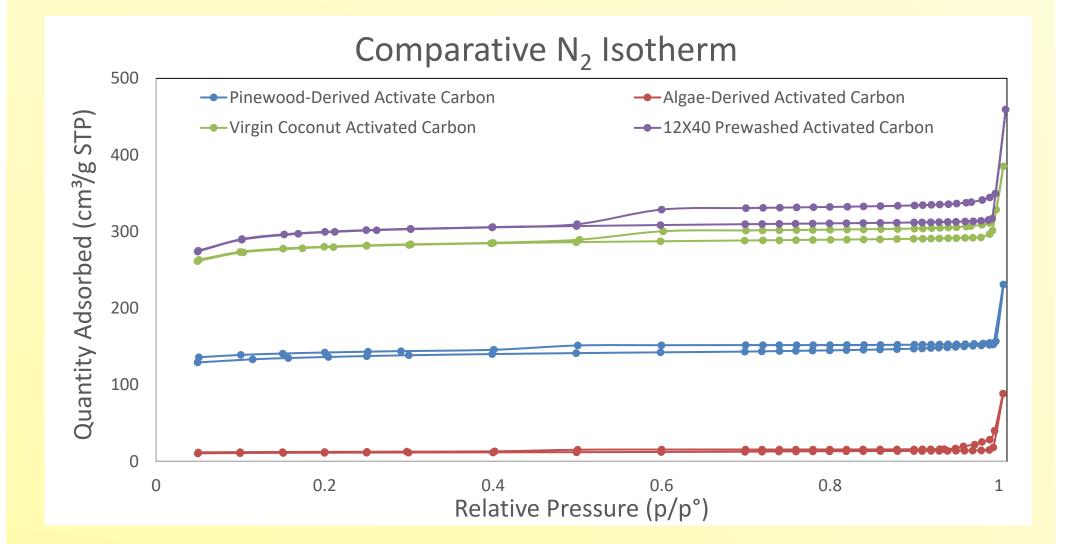

Synthesis of Algae-Derived MgO/Zn-Modified Activated Carbon for Nitrate and Phosphate Removal

Eric Petronella, Chemical Engineering Mentor: Dr. Shuguang Deng School of Engineering of Matter, Transport, and Energy



Problem Statement

- Human activity causes nitrates and phosphates to be released into bodies of water
- Water run off from fertilizers and manure as well as sewage disposal → to the production of toxins in fresh water which pose a threat to aquatic species and humans
- Existing methodologies that can remove nitrate and phosphate from water include bioelectrical systems, membrane-based separation, and ion-exchange adsorption

Characterization Results

Background Research/Objective

Background

- To produce activated carbon, perform first two steps of solid fuel combustion
- **Pyrolysis**: Thermal decomposition under anerobic conditions
 - <u>Slow (2-7°C)</u> favors char production over bio-oil
 - <u>High Temp</u> activated carbon with well-organized C layers

Objective

- Develop a procedure using algae and pinewood to produce activated carbon sorbents
- Steps of Solid Fuel Combustion

Volatile gases: CO, CO₂, H₂, H₂O, light hydrocarbons,

Heating and Dryin

 Evaluate the effectiveness in removing aqueous nitrate and phosphate

Activated Carbon Synthesis

- 1. Fill ceramic boats with carbon source (algae/pinewood) and autoclave at 100°C to remove any remaining moisture
- 2. Heat carbon 7°C/min to 900°C. Hold 2 h under 10 mL/min N₂ flow
- 3. Remove samples and store in desiccator
- 4. Prepare adsorption test tubes with ~250 mg of derived samples
 5. Degas samples for 24 h at 200 °C

BET SA and V_{PORE} of Activated Carbon SamplesSample Type $S_{BET}(m^2/g)$ $V_{PORE}(cm^3/g)$ Algae-Derived36.820.029Pinewood-Derived439.340.237

Virgin Coconut 902.22 0.467 12X40 Prewashed 1010.21 0.492

Conclusion & Future Work

Conclusion

- Synthesis of Activated Carbon was a success for both carbon materials chosen for this study
- Algae-Derived: (moderately successful)
 - **S_{BET}**: 36.82 m²/g
 - **V_{PORE}**: 0.029 cm³/g
 - Pinewood-Derived: (Success)
 - **S_{BET}: 439.34 m²/g**

Tube Furnace to Heat Sample Under N₂ Flow

6. Characterize samples on micrometrics 3-flex adsorption analyzer

Sample Tube

Vacuum and 3-flex Adsorption Analyzer Sample Tubes (

Sample Tubes Over Liquid N₂ Dewar

• V_{PORE} : 0.237 cm³/g

Future Work

- Better Activated Carbon
 - Pyrolyze longer, Use CO₂ rather than N₂
- Metal Impregnation
 - Soak activated carbon in solutions of MgCl₂ and ZnCl₂
 - Carbonize in tube furnace
 - Rinse with HCl and dry
- Adsorption Trials
 - Prepare dilutions of KNO₃ and K₂HPO₄E
 - Run 24-hour trials while shaken with sorbent
 - Assess effectiveness of derived nanocomposites in removal of nitrate and phosphate

- Masters Opportunity for Research in Engineering
- 1. Nutrient Pollution: The issue. EPA, Environmental Protection Agency. (2019, February 4). https://www.epa.gov/nutrientpollution/issue
- 2. Sengupta, S., Nawaz, T. & Beaudry, J. Nitrogen and Phosphorus Recovery from Wastewater. *Curr Pollution Rep* **1**, 155–166 (2015). <u>https://doi.org/10.1007/s40726-015-0013-1GS</u>

3. Sergio C. Capareda, Introduction to Biomass Energy Conversions, CRC Press, ISBN: 978-1-4665-1333-4

4. Suwimon Thowphan et al 2022 J. Phys.: Conf. Ser. 2175 012009

5. Zhang, M., Gao, B. Yao, Y., Xue, Y., & Inyang, M. (2012). Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. *Science Direct: Chemical Engineering Journal*, 210, 26-32. <u>https://doi.org/10.1016/j.cej.2012.08.052</u>

Arizona State University