Research Question

How can the release of alpha-ketoglutarate from polymer microparticles in a hyaluronic acid hydrogel be controlled for increased bone formation?

Background

Approximately 1.6 million people in the United States undergo bone graft surgery every year to treat bone loss. Currently, autograft and allograft bone tissues are the only options for treating bone loss; however, they pose many limitations. Therefore, there is a pressing clinical need to create a novel treatment that will promote bone repair. To accomplish this, the immunomodulating molecule alpha-ketoglutarate (aKG), which stimulates cell metabolism and modulates osteoclast function, can be used. The goal of this project is to create a biomaterial scaffold that will allow control over bone formation through the delivery of aKG in the form of a microparticle (MP).

Experimental Design

To control the release of aKG it was modified into microparticles. Hydrolytically-degradable aKG polymers (paKG) must first be created by reacting aKG with 1,10-decanediol (Figure 1A). paKG was then purified and formed into microparticles through a standard oil in water emulsion technique (Figure 1b).

Figure 1: a) The synthesis of paKG from aKG. b) Scanning electron microscopy (SEM) image of paKG MPs

Experimental Design

Hyaluronic acid (HA) hydrogels were used as a delivery vehicle for paKG MPs (top). HA was chemically modified to enable photocrosslinking and the aKG particles were incorporated into the HA solution prior to crosslinking. MPs were visualized using a fluorescent dye (bottom).

Results

When we created our hydrogels with 10 mg of paKG MPs they did not crosslink into a hydrogel. Nonetheless, we were able to successfully start the release studies for paKG MPs alone and buffer only controls. We believe that our hydrogels were not crosslinking because the MPs inhibit UV light penetration and the photo-crosslinking reaction needed to form hydrogels. We are currently troubleshooting methods to solve this challenge and encapsulate paKG MPs within our hydrogels at a sufficient concentration to perform the release studies.

Conclusions and Future Work

The next step for this project is to run release studies at pHs of 7.4 and 5.8 with the paKG MP in our newly designed hydrogels. From there we plan to run 4-week release studies varying the concentration and sizes of MPs to determine their impacts on the release of aKG. This work is part of my honors thesis and will be continued in the spring of 2024.

Acknowledgments

The author would like to thank Dr. Abhinav Acharya, Dr. Julianne Holloway, Margaret Dugoni, and Sierra Bogner for their contributions to this project. Funding for this project was provided from MTF Biologics, NIH NIAMS R21AR083097-01, and Mayo Clinic-ASU Alliance.

References

[3] Mangal, J. Metabolite release polymers control dendritic cell func. by mod. energy met. Figure 2 & 4 were Created with BioRender.com