Drought Prediction Using Machine Learning

Problem

Droughts devastate the:

- 1. Economy cost the U.S. billions of dollars (energy-related)
- 2. Ecology widespread degradation of ecosystems

Research Goal

Develop a machine learning algorithm that:

- maintains a high accuracy in predictions
- is efficient and scalable
- is able to visualize data

The study uses Random Forests with data from the U.S. Drought Monitor.

Why Random Forests?

- 1. High Accuracy: runs efficiently on large datasets^[1]
- 2. Estimates Missing Data: maintains accuracy when a large proportion of the data is missing^[2]

- \bullet

StateAbbreviation	None	D0	D1	D2	D3	D4	ValidStart	ValidEnd
AZ	8.17	91.83	55.78	32.15	6.09	0.00	2023-10-31	2023-11-06
AZ	8.11	91.89	55.82	32.15	6.09	0.00	2023-10-24	2023-10-30
AZ	8.11	91.89	54.04	30.36	6.09	0.00	2023-10-17	2023-10-23

Devbrat Hariyani, Computer Science Mentor: Dr. Ariane Middel School of Computing and Augmented Intelligence

Dataset Used

The U.S. Drought Monitor (USDM) maps drought areas using categories from D1 to D4 intensity.

It includes abnormally dry (D0) regions and drought-free areas (None).

Results

Graph illustrates how the performance of the Random Forest model changes as the number of trees in the forest increases.

References:

[1] Park, H.; Kim, K.; Lee, D.k. Prediction of Severe Drought Area Based on Random Forest: Using Satellite Image and Topography Data. *Water* 2019, *11*, 705. https://doi.org/10.3390/w11040705 [2] Hobeichi, Sanaa, et al. "Toward a robust, impact-based, predictive drought metric." Water Resources Research 58.2 (2022): e2021WR031829. [3] Chao, Z., Pu, F., Yin, Y., Han, B., & Chen, X. (2018). Convolutional LSTM Network: A Machine 678 Learning Approach for Precipitation Nowcasting. Journal of Sensors, 2018, 1–9. 679 https://doi.org/10.1155/2018/6184713

Libraries Used

- Correlate with spatial data (GIS) from the USDM for better predictions^[3]
- Scale the data to the entirety of the United States
- Correlate with NDVI and other indices used in remote sensing^[2]

