DFT Computer Simulations of High-k Materials for Future Semiconducting Devices

By Cristo Lopez, Mechanical Engineering Junior

Mentor: Dr. Houlong Zhuang, Assistant Professor

Arizona State University – Ira A. Fulton Schools of Engineering

Research question:

How can employing VASP simulations for analyzing the static dielectric properties of high-k materials aid in the streamlining discovery process and identification of other ideal high-k materials with enhanced capacitance for future semiconductor applications?

Background:

- The Creating Helpful Incentives to Produce Semiconductors for America Act (CHIPS & Science Act), facilitates the resources for innovation, exploration, & growth in the semiconductor industry.
- Recent advancements in semiconductor technology has led to miniaturization of electronic devices, requiring faster & more efficient performance than SiO2.
- High-k dielectric oxides/materials have emerged as a promising material to enhance the performance and scaling down of semiconducting devices.
- High-k oxides enable higher capacitance, leading to reduced leakage and power consumption as well as faster processing speeds and increased functionality.

SiC projected in VASP:

 VASP outputs for dielectric tensor calculated in the independent-particle (IP) calculation excluding and including local field effects.

Ionic Contributions to the Static Dielectric Properties

LASTIC MO	DULT CONTR	FROM IONIC R	ELAXATION (k	Sar)		
Direction	XX	YY	ZZ	XY	YZ	ZX
CX	-0,0000	-0.0000	-0.0000	0.0000	0.0000	-0.000
YY.	-0.0000	-0.0000	0.0000	0.0000	-0.0000	0.000
2.2	-0.0000	0.0000	-0.0000	0.0000	0.0000	-0.000
KY.	0.0000	0.0000	0.0000	-266.6739	-0.0000	0.000
YZ	0.0000	-0.0000	0.0000	-0.0000	-266.6739	0.000
X	-0.0000	0.0000	-0.0000	0.0000	0.0000	-266,673
		IONIC CONTR			(C/m^2)	

Methods:

- Ran density-functional theory (DFT) calculations using Vienna Ab initio Simulation Package (VASP) on Arizona State University's supercomputer, Sol.
- VASP requires 4 inputs to construct a simulation which are INCAR – controls the parameters for the calculation KPOINTS - discrete points to sample the Brillouin zone POSCAR – positions of atoms in Cartesian coordinates

 Calculating static dielectric properties done by density functional perturbation theory done in VASP through LEPSILON=.TRUE.

Results/Progress so far:

- Learned how to use VASP to do calculations based on Density Functional Perturbation Theory (DFPT) to determine the static dielectric properties & born effective charges of SiC, Silicon Carbide.
- Future goal is to conduct more VASP simulations on a diverse range of materials, aiming to identify other materials with high static dielectric tensors for potential integration into semiconductor electronics.

Acknowledgements/ References:

Special thanks to my mentor, Houlong Zhuang, for guiding me throughout the journey of learning how to use Vienna Ab-Initio Simulation Package (VASP) and providing help when needed. Another special thanks to Josh Burks for assisting me in setting up and using VASP in the Linux 8 interface. Finally, thanks to John Robertson and Robert M. Wallace for essential background on High-k materials and metal gates for CMOS applications.

