Investigating Barrier Properties of Laminate Packaging Materials for Flexible Batteries

Benito Rincon Ramirez, Mechanical Engineering

Mentor: Candace K. Chan

School for Engineering of Matter, Transport, and Energy, Arizona State University

Introduction

Flexible batteries are used in wearables such as health monitoring devices, skin sensors, and flexible electronics.

These batteries are made with sealed flexible packaging material which undergo constant bending.

https://www.powerstream.com/thin-lithium-ion.htm

2. Prepared two adhesive tapes and the tab

3. Sealed samples

Adhesives were added between the sealing area to secure the tab used for electrical connections to the battery electrodes.

Methods

4. Bending machine or electrolyte addition

Angle: 60° **Cycles:** 3,000

Research Questions

What is the effect of grain orientation of the seal strength?

What is the effect of the adhesive, tab, and electrolyte exposure on the seal strength? How does the seal strength change after bending?

Analyzed Material

Name: A
Thickness:
0.148 mm

Name: B Thickness: 0.087 mm

Methods

1. Cut the samples into the desired dimensions

Sheet Grain Direction

Horizontal Vertical

Sheet Grain Seal Orientation:

HH: Both horizontalVV: Both verticalVH: 1 vertical & 1

horizontal

■ Baseline ■ Bending ■ Electrolyte

Figure 1 & 2 : The average max force of packaging materials A & B at different orientations.

Figure 3 & 4: Seal strength of A & B with its different conditions

Figure 5 : Comparison of average force per length rate of material A & B with its different conditions

Conclusion

HH had the highest seal strength in both Material A and B. Material A's seal strength decreased when adding adhesive + tab. It also decreased slightly with bending but decreased the most with electrolyte addition. Similar trend occurred in Material B except the seal strength increased in bending. Material B's seal strength is higher in all conditions when compared to Material A.

Acknowledgements

Candace K. Chan Research Group, School for Engineering of Matter, Transport, and Energy, Arizona State University. This research was supported in part by Fulton Undergraduate

