Using Biomechanical & Physiological Parameters as a Predictive Model for Negative Postsurgical Outcomes
Angelo La Rosa, Biomedical Engineering Major
Mentor: Dr. Thurmon Lockhart, Professor
Fulton School of Engineering

Objective & Research Question:
The goal is to create a preliminary setup to then assess if dog’s gait, heart rate variability (HRV), and posture can be used to make a short-term prediction of post-operative morbidity

Background:
• Hundreds of thousands of dogs undergo spay/neuter surgeries yearly: mortality 0.9/10,000 surgeries in dogs
• Postoperative outcomes following a human cardiac surgery did link frailty and instability with HRV and gait speed
• Polar H10 monitor tracks R-R intervals for HRV and inertial measurement unit (IMU) measures gait and posture change

Methods:
• The below IACUC approved procedure will be used:
 • After equipment is put on, dogs will be treated, eye level, forward for a small interval
 • During this time, devices will be recording and researcher must take behavior notes
 • “Follow-ups” are done via reading medical notes following the spay/neuter procedure
• Data analysis includes:
 • Using nonlinear dynamics in chaos theory, following the biomechanical/physiological parameter’s trajectories in 3D vector space

Conclusion:
• The preliminary setup can be used to track R-R intervals to do a HRV analysis for instability
• The GPS from the Polar H10 monitor with the forward velocity of the IMU devices could be used for gait speed
• Two IMU devices should be able to track the motion of moving towards each other as the change in posture

Next steps:
• Comparing the HRV analysis to gold standard ECG recording devices: Holter monitor or PPG
• Integrating the IMU devices to the Polar H10 to then do Chaos theory analysis of the parameters

Aims:
• Establishing a predictive model for canine neuter or spay negative postoperative outcome
• Correlating movement variability parameters to frailty and instability in R-R intervals

Hypothesis:
We hypothesize that an increase in R-R HR interval instability and a decrease in gait speed frailty with steady state postural measurements will lead to a high probability of a negative postoperative surgical outcome following canine spay/neuter

Project Overview: