Deep Learning based Changepoint Detection for Robot Learning

Motivation

The study focuses on breaking down long-horizon tasks for robots using changepoint detection. Robot learning is enhanced by using neural networks, a computationally efficient method not commonly used in this context.

Research Method

- We employ statistical testing methods to segment long-horizon tasks into manageable segments.
- By optimizing a measure between pre-change and post-change data points, confirming the statistical significance.
- This precise method reduces random fluctuations, ensuring reliable and meaningful insights.

Adarsh Hiremath, Computer Science Mentor: Nakul Gopalan, Asst Professor School of Computing and Augmented Intelligence

Related Work

• Contrastive Approach to Change Point Detection[1] • Sequential Changepoint Detection using checkpoints^[2]

statistic. Changepoints are identified when the test statistic in a specific window exceeds a threshold.

Progress

• Established the baseline results with the WISDM dataset, with the suitable statistical testing algorithm.

• Expanded the experimentation to honeyBee dataset(3D)

	Results	
et	False Alarm	Detection Delay
tic Data	0	5.70s ± 2.40s
/I Dataset	5	19.64s ± 5.40s
ataset	2	41.50s ± 14.90s
Dataset	7	11.72s ± 1.60s

References

[1] Puchkin, N. and Shcherbakova, V., 2023, April. A contrastive approach to online change point detection. [2] Titsias, M.K. et al. 2022. Sequential changepoint detection in neural networks with checkpoints.

