In-Plane Anisotropy of In-situ Ga etching on (010) β-Ga₂O₃ using MOCVD

Abishek Katta, Material Science and Engineering Mentor: Prof. Nidhin Kurian Kalarickal School of Electrical Computer and Energy Engineering, Arizona State University

Introduction – Promise of β -Ga₂O₃

- High breakdown field strength of 8MV/cm \rightarrow High BFOM of 3444.
- Availability of free substrates up to 4 inch using Czochralski, edge defined film fed growth etc.
- Wide range of controllable n-type doping from 10¹⁵ cm⁻³ to 10²⁰ cm⁻³ using shallow donors like Si, Ge, Sn.

<u>100 mm Ga₂O₃ (001) substrate</u>

Properties	Si	SiC	GaN	β-Ga ₂ O ₃
E _g (eV)	1.1	3.3	3.4	4.8
E _c (MV/cm)	0.3	2.5	3.4	8
Doping	Both P and N	Both P and N	Both P and N	Only N
μ (cm²/Vs)	1300	800	1200	200
K (W/cmK)	1.3	4.2	1.5-2.5	0.1-0.2
Baliga's FOM	1	340	1450	3444
Bulk Substrates	Yes	Yes	No	Yes (size ~100mm)

Comparison of β -Ga₂O₃ material properties with other semiconductors

Requirement of Low-Damage Etching

- 3-D structures like fins and trenches are required in key device structures like trench MOSFETs/SBDs, finFETs, gate recess etc.
- Damage-free etch processes are critical for fabrication these structures.
- Wet (KOH, HF, and H₃PO₄, MacEtch) and dry (BCl₃/Ar) processes have been used for etching Ga_2O_3 , however each technique has its own challenges.

- Dry etching \rightarrow Plasma induced damage, inclined and rough sidewalls.

- Step 1 \rightarrow TEGa undergoes pyrolysis above 350 °C depositing Ga on the sample surface.
- Step 2 \rightarrow Gallium reacts with Ga₂O₃ forming volatile Ga₂O (suboxide) which desorbs from the sample surface.

tilted SEM imaging.

Significant anisotropy in sidewall morphology is observed.

Trenches aligned along [001] direction show smooth morphology due to the formation of (100) sidewall planes with low surface energy.

