
Electrified Water Disinfection and Ammonia removal via on-site Electrochlorination

Introduction

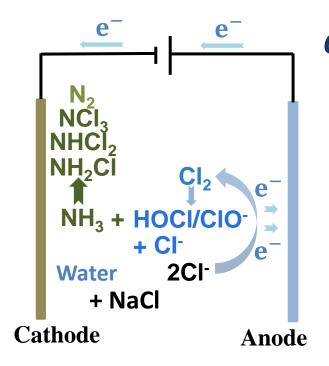
of global population still do not have access to safely drinking water managed sources^[2]

High capital cost required for centralized treatment and water distribution grids

On-site electrochlorination oxidizes ubiquitous chloride ions into chlorine: $2Cl^- + 2e^- \rightarrow Cl_2$

Enacts primary disinfection and provide disinfectant residuals

On-site electrochlorination does not require chemical addition and does not generate waste

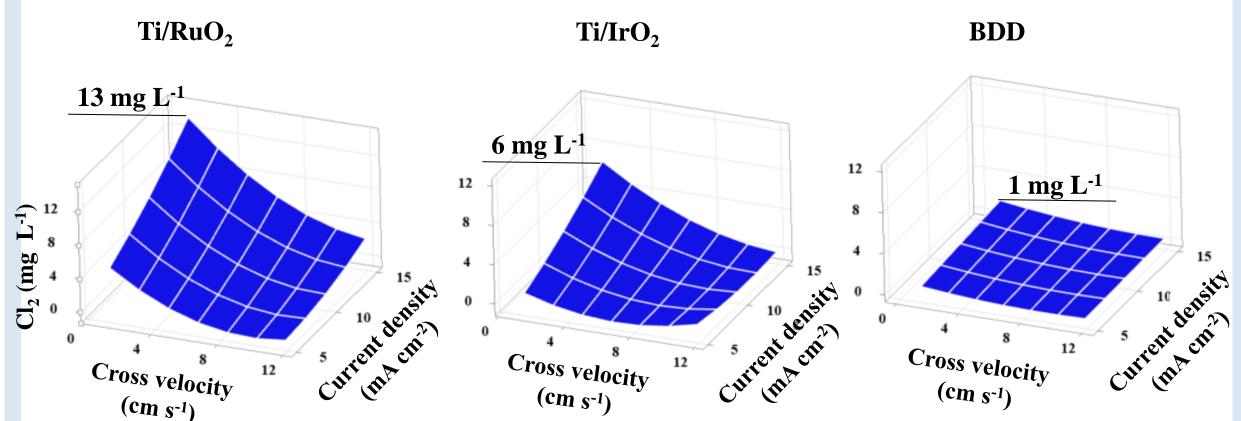

Can be implemented for ammonia removal in ammonia contaminated waters

Materials and Methods

Anode

Cathode

G Flow through reactor


Cross velocities of 1.3-11.0 cm s⁻¹ were *examined* (0.1-0.9 L *min*⁻¹)

On-site electrochlorination for water disinfection

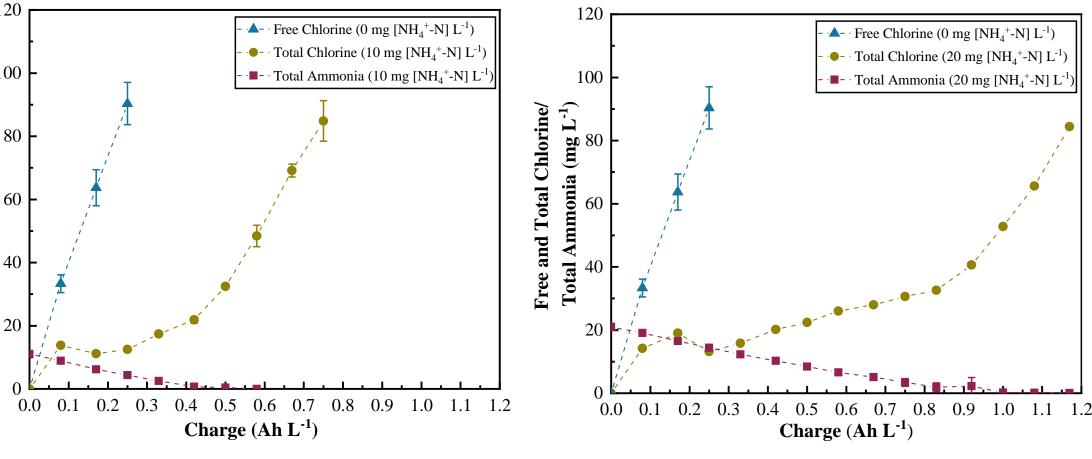
- **Galvanostatic operation mode (current** densities of $j = 5-15 \text{ mA cm}^{-2}$ were tested)
- □ Ti/RuO₂, Ti/IrO₂ and BDD anode materials were evaluated, and Ti plate was used as a cathode
- \Box [Cl⁻]₀=50-250 mg L⁻¹ (below MCL of chloride for drinking water)

On-site electrochlorination for ammonia removal

- □ Batch type reactor (0.2 L volume)
- **Galvanostatic operation mode (constant current** density of j = 17 mA cm⁻² (i = 0.1 A))
- □ Ti/IrO, mesh as an anode and Ti plate as a cathode material
- \Box [Cl⁻]₀ = 3000 mg L⁻¹ (concentration usually found *in brine waters)*
- \Box 10 and 20 mg [NH₄⁺-N]₀ L⁻¹ were tested

80 80

Dominic Varda, Environmental Engineering Mentors: Aksana Atrashkevich (PhD student), Dr. Sergio Garcia-Segura Arizona State University: School of Sustainable Engineering and the Built Environment


Results and Discussion On-site electrochlorination for water disinfection

*Ti/RuO*₂ was evaluated as the most efficient electrocatalysts for sustained active chlorine production.

Desirable chlorine content might ne insured by selecting appropriate operating parameters.

Cross velocity was identified as the most influential parameter on active chlorine production.

On-site electrochlorination for ammonia removal

 $2NH_3 + 3HOCl \rightarrow N_2 + 3H2O + 3H^+ + 3Cl^-$

Oxidation of ammonia during on-site electrochloirnation takes place in the vicinity of the anode surface due to local excess of HOCI trough mechanism of chlorine break point.

Conclusion

- ✓ Ti/RuO₂ was evaluated as most efficient electrocatalyst for sustained electro generation of active chlorine.
- ✓ Desirable chlorine content might ne insured by selecting appropriate operating parameters. Content as high as 13 ppm of active chlorine were produced in a single pass of electrochemical flow cell.
- Cross velocity was identified as the most influential parameter on active chlorine production.
- ✓ Gradual total ammonia oxidation during on-site electrochloirnation takes place in the vicinity of the anode surface due to local excess of HOCI through mechanism of chlorine breaking point.

Future Work

- > Compare mechanism of chlorine break point during on-site electrochloirnation with conventional chlorination.
- > Evaluate mechanism of chlorine break point during *on-site* electrochloirnation at different hydraulic parameters (different rotation speeds).
- > Evaluate mechanism of chlorine break point during on-site electrochloirnation at different charge transfer rates.

References

[1] S. Garcia-Segura, A. B. Nienhauser, A. S. Fajardo, R. Bansal, C. L. Conrad, J. D. Fortner, M. Marcos-Hernández, T. Rogers, D. Villagran, M. S. Wong and P. Westerhof, "Disparities between experimental and environmental conditions: Research steps toward making electrochemical water treatment a reality", Current Opinion in Electrochemistry, vol. 22, pp. 9-16, 2020.

[2] World Health Organization, "Progress on drinking-water, sanitation and hygiene", 22 February 2018.

[3] EPA, "Disinfection Profiling and Benchmarking. Technical Guidance and Manual", 2020.

