Development of an *in vitro* Model for the Identification of Volatile Biomarkers of Pneumonia
Paula Phan, Biomedical Engineering
Mentor: Barbara Smith, Ph.D.
School of Biological Health Systems Engineering

Research Question
The objective of this research is to identify biomarkers of Pneumonia by developing a co-culture system using custom technology and examining its volatile organic compound expression across time.

Introduction
Pneumonia remains one of the leading causes of global mortality affecting 2.49 million people annually due to poor diagnostic measures [1]. In recent years, volatile organic compounds (VOCs) have emerged as easily accessible biomarkers for use in point-of-care diagnostics. Despite recent advancements, exhaled breath analysis studies have demonstrated poor predictive accuracy with VOCs falsely discovered due to noise or contamination [2]. Through this work, we aim to utilize custom technology to collect VOCs released exclusively by pneumonia-causing bacterial strains in the presence of small cell lung cancer cells with dramatically reduced noise levels.

Experimental Design

![Diagram of experimental process of pneumonia, H345 cell, and co-culture conditions.](image)

Results

![Experimental set-up and image analysis.](image)

Mass Spectrometry Chromatograms

![Chromatogram overlays of significant VOCs found in pneumonia only, H345 only, and co-culture conditions after 48 hours (top) and 72 hours (bottom).](image)

VOC Modeling Analysis

![Bar graphs of the average abundance in significant VOCs found in pneumonia only, H345 only, and co-culture conditions.](image)

Figure 2. (a) Experimental set-up of inoculation with SPME fiber and carbon bead bath for data collection. (b) Bright field images of H345 cells after 48 hours (left) and LIVE/DEAD assay images of H345 cells in the co-culture system after 48 hours (right).

Figure 3. Chromatogram overlays of significant VOCs found in pneumonia only, H345 only, and co-culture conditions after 48 hours (top) and 72 hours (bottom).

Figure 4. (a) Bar graphs of the average abundance in significant VOCs found in each condition across 72 hours.

![Mass spectrometry chromatograms showing integrated abundance of significant VOCs found in each condition across 72 hours.](image)

Conclusion
In this study, we successfully developed a physiologically relevant model to collect VOCs from pneumonia-causing bacteria in the presence of small cell lung cancer cells. Benzaldehyde was a VOC that was found in the pneumonia and co-culture samples, but not in the normoxic H345 sample. This may indicate a potential VOC associated with pneumonia that is worth investigating further.

Acknowledgements
I would like to express my gratitude to Dr. Smith, Jarrett Eshima, and other members in the lab for their guidance and continued support throughout this project. I would also like to thank Fulton Undergraduate Research Initiative and W. L. Gore & Associates for their sponsorship and funding.

References

[1] https://ourworldindata.org/pneumonia