Multi-Constraint Optimization and Co-Design of a 2-MHz All-GaN based 1kW 96% Efficient LLC Converter

Objective

- Minimizing the power losses in a 2MHz LLC resonant converter, a novel multi-variable multi-constraint design optimization algorithm as well as a control system is developed.
- Designing a GaN-based High-density Highly Efficient Power Convertor for Data Centers applications.

Key Contributions of the work

- Comprehensive frequency dependent loss characterization, minimization, and detailed design specific trade-off analysis by developing and solving a multi-variable multi-constraint optimization function
- Intricate quantification of gain gradients corresponding to achievable frequency resolution facilitating MHz level digital implementation
- Accurate parameterization of linearized small signal model using GHA based extended describing function
- Presentation of feasibility and fast transient response of proposed sliding mode control scheme

LLC Resonant Converter Topology

General Harmonic Approximation (GHA) based Modeling

Nitish Jolly, Electrical Engineering

Mentor: Ayan Mallik, Assistant Professor

School of Electrical, Computer, and Energy Engineering, Arizona State University

Multi-constraint Design Optimization

<u>Objective</u>: $Min \sum P_{loss} \{f_s, n, L_r, P_{load}\} = P_{cond} + P_{sw} + P_{core} + P_{winding} + P_{sw} + P_{sw}$ $P_{C_{ESR}}$

Frequency-dependent active loss equation and constraint imposed by ZVS

Experimental Verification and Benchmarking

Pri Seconda Tra

Settling time (τ_s) : 510µs

Load power variation from 90% to 10%

from 10% to 90%

Acknowledgement

This research has been supported by ASU, MORE program and Arizona New Economic Initiative, which are gratefully acknowledged. The research project was co-sponsored by W. L. Gore & Associates. Special thanks to Prof. Ayan Mallik (Mentor) for his expert guidance and support.

Design Specifications

Parameters	Values
Rated Power (Po)	1kW
mary input voltage (V_{in})	380-420V
ary output voltage range (V _o)	12V
nsformer Turns Ratio (n)	30:1
esonant Inductance (L_r)	11.22µH
netizing Inductance (L_m)	95.99µH
sonant Capacitance (C_r)	0.56497nF
lesonant frequency (f_s)	2MHz

Experimental Waveforms {90% to 10% and 10% to 90% load change}

V₀ (Output Voltage)

 $|_{o}| = 12.0V$

50%

Fig. Efficiency at different loading

conditions

oading (%)

75%

