Attempting To Boost TCR/Epitope Binding Affinity With Supervised Contrastive Loss

Introduction

- TCR/Epitope binding is crucial to the immune response
- Several deep learning models have been developed with the goal of accurately predicting this binding affinity
- Supervised Contrastive Loss (SCL) separates label classes in latent space
- In this work, SCL is used as a pre-training step, before Cross Entropy is used for classification

Supervised Contrastive Loss

- Supervised contrastive loss attempts to pull classes apart in latent space, so later classification is an easy task
- In order to evaluate the model, a high dimensional projection network is trained against SCL. The projection network is thrown out at inference time.
- The function below is the canonical SCL function.

Nicholas Moran, Computer Science (BS) Mentor: Dr. Heewook Lee, Assistant Professor Ira A. Fulton Schools of Engineering

Data Preprocessing

• Data is built from VDJDB, McPAS, and IEDB, databases

• We have two split types: tcr and epitope In each type, 5-fold validation is used, where the test set in each is a set of unseen types. This is done because our goal is to accurately predict out-of-class TCR/Epitope bindings

• The TCR sequences are 20 characters long, and the Epitope sequences are 22

Model Architecture

TCR Split- The TCR CASTGSYGYTFGSGTRLTVT at 0 epochs of S 200 epochs of SCL(right). Visualization Done with TSNE, converting a 128D to

Model Type

Base Model- No SCL

Model with SCL

Conclusions and Further Work

- Bioinformatics, 37(Supplement 1), i237-i244.

Visualizations

Epitope Split- The Epitope YVLDHLIVV at 0 epochs of SCL (left) and after 200 epochs of SCL(right). Visualization Done with TSNE, converting a 128D to 2D

Results TCR Split AUC

77.3%

67.6%

Epitope Split AUC

47.0%

53.2%

• The model with SCL does not beat the base model on the TCR split, but does outperform on the Epitope Split.

• This is likely due to the fact that the embedding is being learned in the SCL phase, not the binding affinity phase • In future work, pretrained embeddings should be used in the SCL phase. This would allow the model to focus on optimizing the distance between classes far better

References

Gunel, B., Du, J., Conneau, A., & Stoyanov, V. (2020). Supervised Contrastive Learning for Pre-trained Language Model Fine-tuning. • Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot, A., Liu, C., & Krishnan, D. (2020). Supervised Contrastive

• Weber, A., Born, J., & Rodriguez Martínez, M. (2021). TITAN: T-cell receptor specificity prediction with bimodal attention networks

Michael Cai, Seojin Bang and Heewook Lee. TCR-epitope binding affinity prediction using multi-head self attention

Ira A. Fulton Schools of Engineering **Arizona State University**