Implementation of Mechanophore into Shape Memory Polymer to Create a Self-Sensing, Self-Healing Composite Material

Molly Pavey, Chemical Engineering

Mentors: Dr. Lenore Dai, Director of School for Engineering of Matter, Transport and Energy Dr. Aditi Chattopadhyay, Regents' Professor of School for Engineering of Matter, Transport and Energy

Background

Fig. 1: Cinnamoyl-based Mechanophore Fluorescence and Self-healing Mechanism

- Gunckel et al., ACS Applied Polymer Materials 2020, 2, 3916-3928
- Mechanophore is a type of functional material that undergoes a chemical reaction in answer to a mechanical force
- Previous work created cinnamoyl-based mechanophores that fluoresce under stress
- Mechanophore cross-linking repairs under UV irradiation, permitting repeated damage detection
- Current work incorporates mechanophores into shape memory polymer (SMPs) epoxy, enhancing composites with shape-recovery capability

Goals

- 1. Revise curing conditions to improve mechanophore integration into epoxy and to increase homogeneity and prevent the development of bubbles in composites
- 2. Understand the effects of weight-loading of mechanophore on the mechanical and thermal properties of composite material using dynamic mechanical analysis (DMA) and Differential Scanning Calorimetry (DSC) analysis

Materials and Methods

Results

Fig. 4: Storage Modulus by DMA for Composites

Fig. 6: DSC Heat Flow for Composites

Fig. 5: Tan Delta by DMA for Composites

Improved hardness for 10 wt% composite, but worsened for 5 wt% composite

Slight increase of glass transition temperature by 2.6°C for 10 wt% but lowered 9.5°C for 5 wt% versus neat SMP

Crosslinking improved by over 50% for 10 wt% composite, but worsened by nearly 56% for 5 wt% compared to neat SMP

Possible relationship between weight loading of mechanophore and curing quality

Fig. 3: Mechanophore-Incorporated Composites Under Original and Revised Curing Conditions

Sample	T _g (C) from DMA	$\rho_{xl} \left(\frac{mol}{cm^3}\right) * 10^{-3}$
Neat SMPs Epoxy	52.74 ± 1.38	0.591 ± 0.011
5 wt% Mechanophore Functionalized SMP	43.22±0.00	0.262 ± 0.013
10 wt% Mechanophore Functionalized SMPs	55.36±0.42	0.892 ± 0.004

Future Work

Fluorescence response by mechanical activation

- Characterize the mechanophore incorporated SMPs epoxy resin using fluorescence microscope
- Calculate the change in intensity of fluorescence before and after cracks happen using integrated density information
- Interpretate and correlate between fluorescence emission & stress-strain response

Acknowledgements

- Special thanks to Xingbang Zhao and Chris Whitney for assistance and collaboration
- Thanks to Ira A. Fulton Schools of engineering, MORE research program

