Implementation of Mechanophore into Shape Memory Polymer to Create a Self-Sensing, Self-Healing Composite Material
Molly Pavey, Chemical Engineering
Mentors: Dr. Lenore Dai, Director of School for Engineering of Matter, Transport and Energy
Dr. Aditi Chattopadhyay, Regents’ Professor of School for Engineering of Matter, Transport and Energy

Background

- Mechanophore is a type of functional material that undergoes a chemical reaction in answer to a mechanical force
- Previous work created cinnamoyl-based mechanophores that fluoresce under stress
- Mechanophore cross-linking repairs under UV irradiation, permitting repeated damage detection
- Current work incorporates mechanophores into shape memory polymer (SMPs) epoxy, enhancing composites with shape-recovery capability

Goals

1. Revise curing conditions to improve mechanophore integration into epoxy and to increase homogeneity and prevent the development of bubbles in composites
2. Understand the effects of weight-loading of mechanophore on the mechanical and thermal properties of composite material using dynamic mechanical analysis (DMA) and Differential Scanning Calorimetry (DSC) analysis

Materials and Methods

- Mechanophore is a type of functional material that undergoes a chemical reaction in answer to a mechanical force
- Previous work created cinnamoyl-based mechanophores that fluoresce under stress
- Mechanophore cross-linking repairs under UV irradiation, permitting repeated damage detection
- Current work incorporates mechanophores into shape memory polymer (SMPs) epoxy, enhancing composites with shape-recovery capability

Results

- Improved hardness for 10 wt% composite, but worsened for 5 wt% composite
- Slight increase of glass transition temperature by 2.6°C for 10 wt% but lowered 9.5°C for 5 wt% versus neat SMP
- Crosslinking improved by over 50% for 10 wt% composite, but worsened by nearly 56% for 5 wt% compared to neat SMP
- Possible relationship between weight loading of mechanophore and curing quality

Future Work

- Characterize the mechanophore incorporated SMPS epoxy resin using fluorescence microscope
- Calculate the change in intensity of fluorescence before and after cracks happen using integrated density information
- Interpretate and correlate between fluorescence emission & stress-strain response

Acknowledgements

- Special thanks to Xingbang Zhao and Chris Whitney for assistance and collaboration
- Thanks to Ira A. Fulton Schools of engineering, MORE research program

Sample	T_g (C) from DMA	ρ_d (mol cm$^{-3}) \times 10^{-3}$
Neat SMPs Epoxy | 52.74 ± 1.38 | 0.591 ± 0.011
5 wt% Mechanophore Functionalized SMP | 43.22 ± 0.00 | 0.262 ± 0.013
10 wt% Mechanophore Functionalized SMPs | 55.36 ± 0.42 | 0.892 ± 0.004

Fig. 1: Cinnamoyl-based Mechanophore Fluorescence and Self-healing Mechanism
Gunckel et al., ACS Applied Polymer Materials 2020, 2, 3916-3928

Fig. 2: Mechanophore-Incorporated Composites Under Original and Revised Curing Conditions

Fig. 4: Storage Modulus by DMA for Composites

Fig. 5: $\tan \delta$ by DMA for Composites

Fig. 6: DSC Heat Flow for Composites

Sample	T_g (C) from DMA	ρ_d (mol cm$^{-3}) \times 10^{-3}$
Neat SMPs Epoxy | 52.74 ± 1.38 | 0.591 ± 0.011
5 wt% Mechanophore Functionalized SMP | 43.22 ± 0.00 | 0.262 ± 0.013
10 wt% Mechanophore Functionalized SMPs | 55.36 ± 0.42 | 0.892 ± 0.004