Lignocellulosic Characterization of Sulfate-Reducing Bioreactors (SRBRs) Treating Mining-Influenced Water (MIW)

Caleb McLaughlin, Environmental Engineering

Mentors: Anca Delgado, Assistant Professor of Environmental Engineering; Evelyn Miranda, Biological Design Ph.D. Student School of Sustainable Engineering and the Built Environment

NSF Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG)

What happens to the lignocellulosic composition of the substrate inside an SRBR treating MIW?

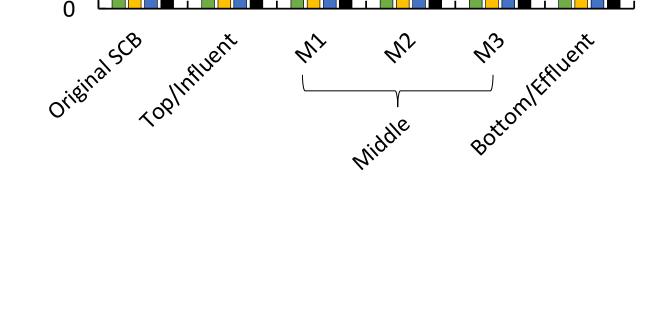
Introduction

SRBRs are a passive treatment method for acidic MIW from active and legacy mine sites. In an SRBR, microbial communities degrade lignocellulosic substrates, producing electron donors for sulfate-reducing bacteria (SRB). Sulfate reduction produces free sulfide and alkalinity, which converts toxic and dissolved heavy metals from MIW into sulfide precipitates and neutralizes acidity. The pathways through which lignocellulose is made available as an organic carbon source for SRB are poorly understood. In this project, we aim to characterize lignocellulosic degradation throughout SRBRs packed with spent brewing grains (SBG) and sugarcane bagasse (SCB) to gain valuable knowledge of microbial processes for optimization of MIW treatment.

Results SRBR Performance Total VFAs Total Metal(loid)s* Sulfate ORP DO рН •

SBG \rightarrow high-performing MIW

Methodology



SRBRs were packed with 30% limestone and 70% SBG or SCB, treating MIW for 135 days. To quantify how lignocellulose (hemicellulose, cellulose, & lignin) changed throughout the SRBRs, an Ankom fiber analyzer was used:

1) Neutral Detergent Fiber (NDF) \rightarrow cellulose, hemicellulose, and lignin remain (washes away proteins, fats, and starches)

2) Acid Detergent Fiber (ADF) \rightarrow cellulose and lignin remain (washes away hemicellulose) % Hemicellulose = (NDF - ADF)

	(s.u.)	(mV)	(mg/L)	(mg/L)	(mM)		ng/L)	• SDG 7 Ingn-periorning wirw							% Hemicellulose = (NDF - ADF)					
Average MIW	2.6	520	5	500	N/A	120		•	treatment $SCB \rightarrow high-$	V	3		Acid Detergent Lignin (ADL) \rightarrow Lignin remain							
SBG Effluent	5.9	260	1.3	41	20	1.9	Removal ~98%	treatment, except for low sulfate reduction and low VFA production							(washes away cellulose) % Cellulose = (ADF - ADL)					
SCB Effluent	6.3	100	2.5	414	BDL	5.4	Removal ~96%								% Lignin = (ADL)					
BDL = below	DL = below detectable limit / VFA = volatile fatty acids / ORP = oxidation-reduction potential / DO – dissolved oxygen / *Total metal(loid)s include Cd, Co, Cu, Fe, Ni, Pb, and Zn															-	-	v weight		
	Lignocellulose Characterization														before and after each wash, the lignocellulose content is					
50		Spe	nt Brewi	ng Grains	s (SBG)								characterized. Ankom 2000 Fiber Analyzer							
50	ſ								Average % Dom	oval Compared	to Original								-	
40 ھ %			-	ι		Ŧ	Average % Removal Compared to OriginalCelluloseHemicelluloseLigninOther				Other			Microbial Analysis				ysis		
Lignocellulose Composition (%) 07 07 07 07	-								nal SBG 17.8	40.2	5.91	36.1				BG		SCB	v	
sitio		-	The second secon			Ce	llulose (%)		Influent	17 23.5		7.40 2.70								
20 south							micellulose (%)	M1 M2		15.7		19.7		3	–		-	-	Hydrogenispora	
10 گ ٿ	-	L L L		Ť	Ť		nin (%) her (%)	M3		12.7		27.0								
							ner (70)		om/Effluent	15.3		17.4							Ruminiclostridium	
0		×				×		() = n	no removal										Bacteroides	
	3580	fluent	h	lus.	N ³ Bottom/Effluer								G						🗖 Butyrivibrio	
ain an	Original SBC Influent			γ				*	★ Original SBG → Relatively high in hemicellulose				unc							
0.	<u>ک</u>	•		Middle	a otto								nda						🗖 Clostridium	
				U.	\mathbf{v}								Abundance	C					🗖 Ruminococcus	
		Su	arcano	Bagasse (% A	Ζ					🗖 Acetivibrio	
50	Г	Su	garcane	Dagasse (SCD)								lative						Fibrobacter	
_ 40								Average % Removal Compared to Original								_		Eubacterium		
556 1 (%													Re						Cellulomonas	
Lignocellulose Composition (%) 05 05 05 07					Ī		llulose (%)		nal SCB 45.2	21.3	15.3	18.2							Geobacillus	
02 Josi				, Т			emicellulose (%)	Top/In M1	nfluent 2.13	14.7 12.9	4.63	 5.73								
Lign omf							nin (%) her (%)	M2	8.32	18.8				1					Dethiosulfovibrionaceae	
10 5 1								M3	1.38	13.6									Desulfovibrio	
0								Bottor	om/Effluent 1.96	14.7										

(--) = no removal

 \star Original SCB \rightarrow Relatively high in cellulose and lignin

Desulfobacteraceae Desulfurispora Desulfitibacter Desulfosporosinus 0 Sulfatereducing ignocellulolytic

Key Findings

- Metal(loid) removal was largely unaffected by lignocellulosic composition under project conditions.
- Fermentation products (e.g., VFAs) likely came from the biodegradation of hemicellulose and/or other category (i.e., starches, sugars, proteins, fats).
- Lignocellulose composition largely affects the composition of the lignocellulolytic bacteria.
- The substrate rich in hemicellulose (SBG) promoted a higher sulfate reduction in this project.

Future Work

Analyze lignocellulose composition of SRBRs operating in the field at mining sites for many years to understand SRBR longevity and effective MIW treatment.

Acknowledgements: We are grateful to FURI and the National Science Foundation (NSF) under Ca No. EEC-1449501 for financial support of this project. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the NSF.

