
Experiments & Results
• OpenAI Gym’s CarRacing-V0 environment

• Three driving scenarios

• Evaluation metrics – Actions Error and Change in Value

Baseline Comparison

No attack (t = 0)  Ours (t = 0)  No attack (t = T)   Ours (t = T)  Random (t = T)   Target state

Fig 2: Targeted and Random Attacks on Straight Track Scenario.

Fig 3: Trajectories in the Three Scenarios with No Attack, Random Attack, and 

Optimized Attacks.
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Introduction
• Deep Reinforcement Learning (RL) policies are 

vulnerable to adversarial attacks.

• Threat to Autonomous Driving (AD) system.

Motivation

• Effectiveness of targeted attacks [1].

• Practicality through physical object manipulation [2].

Contributions

• Targeted Physically Realizable Attack (TPRA) - a static 

perturbation on object to make AD reach target.

• Ablation studies to find best attack parameters.

• Robustness of object to translation.

Conclusion & Future Work
• We presented TPRA by placing adversarial objects in the

environment that can fool DNN policies to reach a target.

• Future work will study 3D and multi agent scenarios.
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Fig 1: Illustration of Targeted Physical Adversarial Attack on CarRacing-V0 Environment.

Targeted Physically Realizable Attack
• Agent dynamics are known.

• Environment dynamics are learned using a model.

• Target specified by attacker.

Attack Formulation
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Where,  π is the pretrained policy that outputs action 𝑎𝑡,
𝑠𝑡 is the image seen by agent without object,

𝑓(. , . ) is the learned environment dynamics model,

𝑔(. , . ) is the agent dynamics,

𝜓 𝛿𝑡, Φ is the transition function, 

𝜖 is the strength of perturbation, and

Δ𝑠 is the static perturbation that need to be found.

Attack Strength vs Attack Length

Table 2: Ablation Studies on Attack Strength, 𝜖 vs Attack Length, 𝑇.

Table 1: Quantitative Comparison with Baseline.

Robustness to Translation

• Moving towards track

still facilitates attack.

• Moving away reduces 

attack effectiveness.

Fig 4: Attack Robustness to Object Position.

Scenarios Actions Error Value Change (%)

Straight + Random 0.064 0

Left turn + Random 0.069 0

Right turn + Random 0.046 -10.72

Straight + Proposed 0.126 -17.70

Left turn + Proposed 0.138 -32.26

Right turn + Proposed 0.062 -32.15
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0.1 0.091 0.064 0.090 0.064 0.088 0.063

0.3 0.088 0.078 0.087 0.069 0.085 0.066

0.5 0.086 0.113 0.077 0.107 0.083 0.070

0.9 0.081 0.125 0.076 0.126 0.078 0.093


