Engineering of Charge Density Wave behavior in NdTe₃

Abstract

In the Lanthanum based Tri-telluride family, RTe₃s [R=La, Ce, Nd, Sm, Gd, Tb, Dy, Er, Ho, Tm] the emergence of Charge Density Waves (CDWs) has been under investigation for a long time due to anisotropy of the crystal and incompletely filled 4f-orbital. Confirming the CDW states in RTe₃s and understanding their behavior as a function of variable parameters, like temperature, will help in speculating the performance of RTe₃ as a superconductor. Elemental Neodymium and Tellurium, along with Iodine as transport agent will be used in synthesis by Chemical Vapor Transport, which will result in single crystals of RTe₃. Then These RTe₃s were characterized to confirm CDW states by the presence of Phonon Softening and CDW transition temperature by couple-model.

Background

Typically, in metals, the equilibrium position of ions forms a perfectly periodic lattice, and the electron density is highly uniform. When the temperature is changed, the Fermi Surface (FS) of some metals becomes unstable above/below a certain transition temperature (Tc); this instability results in redistribution of charge density thereby forming periodic space modulation. Such a periodic space modulation is termed as Charge Density Waves (CDW). This modulation of charge density alters the ion potential in the lattice leading to the movement of ions to a new equilibrium position, as a result, a CDW is accompanied by periodic lattice distortion. The phonon mode attained by the wave vector around $q=2K_f$ will be renormalized to vibrate at lower energy on account of divergence of response at that wave vector. This kind of phonon renormalization is called phonon softening.

Materials and synthesis method

Single crystals of NdTe₃ are successfully grown with CVT, for the first time, with elemental (99.9% purity by Alfa Aesar) Neodymium, Tellurium and Iodine as Transport agent. All the precursors were filled in a quartz ampoule; the ampoule was vacuum sealed and then the ampoule was kept in a two-zone furnace at an effective temperature of 832°C at source and 690°C at sink for 96 hours. Refer to Fig. 1 for crystal size.

Fig. 2 showing the Raman Spectra of the grown crystal; Fig. 3 showing the diffracted peaks from XRD confirms the crystal is NdTe₃ with (0 1 0) orientation from literature. Fig. 4 shows temperature dependent Raman spectrum from 79K to 418K; the peak at 76.3 and 91.2 cm⁻¹ are the CDW amplitude mode peak and neighboring peak. As temperature increases, the peaks move towards lower frequencies/energies. The temperature at which the CDW peak shifts to zero frequency is known as CDW transition temperature.

Yashika Attarde, Material Science and Engineering Mentor: Prof. Sefaattin Tongay, Associate Professor of Materials Science and Engineering Ira. Fulton school of engineering

Results, Discussions and Conclusion

Fig. 5 shows the fitting of CDW peak position as a function of temperature, thereby resulting in temperature where CDW peak is at zero frequency i.e T_{cdw} = 403K.

Conclusion

- NdTe₃ crystal was successfully grown by CVT, as confirmed from Raman Spectroscopy and XRD.
- Temperature dependent Raman spectroscopy shows phonon-softening and was used to calculate CDW transition temperature by couple model.

Future work

- Functionalization of NdTe₃ to prevent environmental degradation
- Magnetic measurement to find magnetic ordering for physical property identification.
- R vs T measurement to find out T_{cdw} by electrical field; this study couple with phonon softening could provide with a comparative study of CDW attained by heat and electric field.
- Thickness dependence of T_{cdw} , by monolayer exfoliation of NdTe₃.

Acknowledgements

- I sincerely appreciate Dr. Tongay and his PhD. Student Kentaro for all their technical guidance, advice and suggestions throughout this project.
- I would like to thank Ira. A. Fulton School of Engineering for supporting MORE research; and entire MORE team for making this learning experience so memorable.

References

- Zhu, Xuetao, et al. "Misconceptions associated with the origin of charge density waves." Advances in Physics: X 2.3 (2017): 622-640
- Dalgaard, Kirstine J., et al. "Anomalous Shubnikov-de Haas quantum" oscillations in rare-earth tritelluride NdTe₃." *Physical Review B* 102.24 (2020): 245109.
- Hu, B. F., et al. "Coexistence and competition of multiple chargedensity-wave orders in rare-earth tritellurides." *Physical Review B* 90.8 (2014): 085105.
- DiMasi, E., et al. "Chemical pressure and charge-density waves in rareearth tritellurides." *Physical Review B* 52.20 (1995): 14516.

