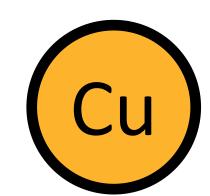
Establishing a Testing Method for a Microscale Graphene-Coated Copper Wire

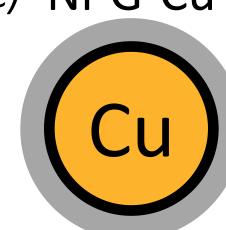
Yisha Ng, Mechanical Engineering Mentor: Dr. Wonmo Kang, Assistant Professor School for Engineering of Matter, Transport, and Energy

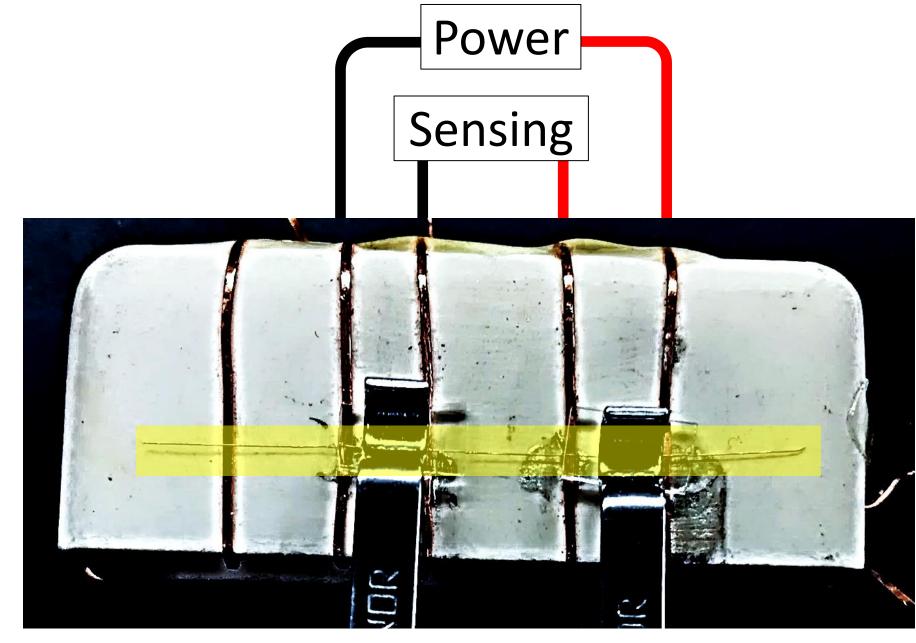
Objective

Determine and implement an improved testing method to characterize the thermo-electrical properties of microscale graphene-coated copper wire.

Motivation


- Layering microscale copper wire with an axially-continuous graphene coating can improve current carrying capacity, electrical and thermal conductivity, and oxidation and corrosion resistance.
- Added as an insulating layer between a central copper wire and a nickel outer layer, graphene can prevent the alloying and diffusion of the two metals, increasing the usable application temperature.
- Characterizing the thermo-electrical properties of these wires requires a consistent and accurate method to record data.





Wire Configurations with G=graphene (Cross Sectional View)

Wire Sample Mounted with 4-Point Probe Measurement

Methodology

Requirements and available equipment were determined and options for a new test method investigated.

Requirements

- Must apply constant voltage and increasing current until test article failure.
- Must document current, voltage, and time data.
- Prefer method that does not require adding a PC to the existing test setup.

Available Instrumentation

- Keithley 2260B-30-72 720W power supply
- Keithley DMM6500 6 1/2 digit multimeter
- Keithley 2450 SourceMeter

Outcome

- Test functions written in Test Script Processor (TSP) are executed from a USB drive on the 2450 SourceMeter.
- Current (limited to maximum 1A), voltage, and time are measured by the 2450 and written to the USB drive.
- Power is supplied by the 2260B-30-72 commanded by the 2450 via TSPNet LAN commands.
- A PC is not required to run test sequences, although TSP functions can be modified on a computer before being uploaded to the USB drive.

2450 SourceMeter and 2260B-30-72 Power Supply Required for New Test Method

Future Work

- Complete TSP function programming and testing with instruments.
- Create and document a method to generate new functions as needed.

[1] H. Kashani, C. Kim, K. Perkins, and W. Kang. An Axially Continuous Graphene-Copper Wire for High Power Transmission: Thermoelectrical characterization and mechanisms, (Journal manuscript in progress).

Keithley/Tektronix for his technical support.

I would like to thank Dr. Wonmo Kang and Dr. Hamzeh Kashani for their support and guidance, and Vince Woerdeman of

