Ali’i CFG: Improving the Accuracy and Completeness of Control Flow Graphs

Zion Leonahenahe Basque, Computer Science
Mentor: Royu “Fish” Wang, Assistant Professor
CIDSE

Motivation Approach: Resolving Indirect Calls in CFGs Approach: Pointer Propagation

Modern day automated security analysis depends on
Control Flow Graphs (CFG) that are assumed to be
complete for sourceless executables. Often, these
CFGs are flawed due to a lack of resolving indirect
control flow. To increase automated analysis of
executables, we must increase the completeness of
CFG’s by resolving these indirect control locations.

On average executable programs contain nearly 91
unresolved control flow locations, accounting for

nearly 50% of all indirect control flow in a executable.

This is a major analysis flaw.

loc_0x4007b
004007be

004007c1
004007¢3
004007¢8
004007cd
004007d2
004007d4

mov
cdge
mov
mov
moy
call
jmp

eax, [rbp-0x24]

rax, [rbp+rax*0x8-0x20)
esi, 0x2

edi, 0x1

0x4007e7

f)

Approach: Skipping costly structures

+

rbp-0x8] {s 8}, Ox9

6460627 mow eax, [rbp-8xd
400622 pop rop

7
hotseer 09400620

06460614), 81

int main()
{

void (*func_ptr_arr[])(int, int) =
{add, subtract, multiply};

int loc = 1;
if(loc >= 0)
(*func_ptr_arr[loc])(1, 2);
else
printf("Bad Loc”)
return 0; }

Results

loc_6x4007be

004007be
004007c1
004007¢3
004007c8
004007 cd
004007d2
004007d4

mov
cdqe
mov
mov
mov
call
jmp

eax, [rbp-0x24]

rax, [rbp+rax*x8-0x20]
ox2

edi, 6x1

0x4007e7

- Resolving around 25% more indirect control flow
locations on average

- Ability to resolve constant propagation across
functions and resolved structs in memory

- Created a Python framework for extending with
more modern resolving methods like Andersen
Analysis (future work)

%’ Ira A.Fulton Schools of
Engineering

Arizona State University

