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Motivation Approach: Resolving Indirect Calls in CFGs Approach: Pointer Propagation

Modern day automated security analysis depends on
Control Flow Graphs (CFG) that are assumed to be
complete for sourceless executables. Often, these
CFGs are flawed due to a lack of resolving indirect
control flow. To increase automated analysis of
executables, we must increase the completeness of
CFG’s by resolving these indirect control locations.

On average executable programs contain nearly 91
unresolved control flow locations, accounting for

nearly 50% of all indirect control flow in a executable.

This is a major analysis flaw.
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Approach: Skipping costly structures

+

rbp-0x8] {s 8}, Ox9

6460627  mow eax, [rbp-8xd
400622 pop rop

7
hotseer 09400620

06460614 ), 81

int main()
{

void (*func_ptr_arr[])(int, int) =
{add, subtract, multiply};

int loc = 1;
if(loc >= 0)
(*func_ptr_arr[loc])(1, 2);
else
printf("Bad Loc”)
return 0; }

Results
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- Resolving around 25% more indirect control flow
locations on average

- Ability to resolve constant propagation across
functions and resolved structs in memory

- Created a Python framework for extending with
more modern resolving methods like Andersen
Analysis (future work)
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