
Ali’i CFG: Improving the Accuracy and Completeness of Control Flow Graphs
Zion Leonahenahe Basque, Computer Science

Mentor: Royu “Fish” Wang, Assistant Professor
CIDSE

Approach: Resolving Indirect Calls in CFGsMotivation

Approach: Skipping costly structures

Modern day automated security analysis depends on
Control Flow Graphs (CFG) that are assumed to be
complete for sourceless executables. Often, these
CFGs are flawed due to a lack of resolving indirect
control flow. To increase automated analysis of
executables, we must increase the completeness of
CFG’s by resolving these indirect control locations.

On average executable programs contain nearly 91
unresolved control flow locations, accounting for
nearly 50% of all indirect control flow in a executable.
This is a major analysis flaw.

Approach: Pointer Propagation

Results

int main()

{

void (*func_ptr_arr[])(int, int) =

{add, subtract, multiply};

int loc = 1;

if(loc >= 0)

(*func_ptr_arr[loc])(1, 2);

else

printf("Bad Loc”)

return 0; }

- Resolving around 25% more indirect control flow
locations on average
- Ability to resolve constant propagation across
functions and resolved structs in memory
- Created a Python framework for extending with
more modern resolving methods like Andersen
Analysis (future work)

